122 research outputs found

    Integrability of V. Adler's discretization of the Neumann system

    Full text link
    We prove the integrability of the discretization of the Neumann system recently proposed by V. Adler.Comment: 9 pp., LaTe

    Spin chain from membrane and the Neumann-Rosochatius integrable system

    Full text link
    We find membrane configurations in AdS_4 x S^7, which correspond to the continuous limit of the SU(2) integrable spin chain, considered as a limit of the SU(3) spin chain, arising in N=4 SYM in four dimensions, dual to strings in AdS_5 x S^5. We also discuss the relationship with the Neumann-Rosochatius integrable system at the level of Lagrangians, comparing the string and membrane cases.Comment: LaTeX, 16 pages, no figures; v2: 17 pages, title changed, explanations and references added; v3: more explanations added; v4: typos fixed, to appear in Phys. Rev.

    The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits

    Get PDF
    AbstractWe investigate some basic questions concerning the relationship between the restricted Grassmannian and the theory of Banach Lie–Poisson spaces. By using universal central extensions of Lie algebras, we find that the restricted Grassmannian is symplectomorphic to symplectic leaves in certain Banach Lie–Poisson spaces, and the underlying Banach space can be chosen to be even a Hilbert space. Smoothness of numerous adjoint and coadjoint orbits of the restricted unitary group is also established. Several pathological properties of the restricted algebra are pointed out

    Integrable discretizations of some cases of the rigid body dynamics

    Full text link
    A heavy top with a fixed point and a rigid body in an ideal fluid are important examples of Hamiltonian systems on a dual to the semidirect product Lie algebra e(n)=so(n)Rne(n)=so(n)\ltimes\mathbb R^n. We give a Lagrangian derivation of the corresponding equations of motion, and introduce discrete time analogs of two integrable cases of these systems: the Lagrange top and the Clebsch case, respectively. The construction of discretizations is based on the discrete time Lagrangian mechanics on Lie groups, accompanied by the discrete time Lagrangian reduction. The resulting explicit maps on e(n)e^*(n) are Poisson with respect to the Lie--Poisson bracket, and are also completely integrable. Lax representations of these maps are also found.Comment: arXiv version is already officia

    Weak Poisson structures on infinite dimensional manifolds and hamiltonian actions

    Full text link
    We introduce a notion of a weak Poisson structure on a manifold MM modeled on a locally convex space. This is done by specifying a Poisson bracket on a subalgebra \cA \subeq C^\infty(M) which has to satisfy a non-degeneracy condition (the differentials of elements of \cA separate tangent vectors) and we postulate the existence of smooth Hamiltonian vector fields. Motivated by applications to Hamiltonian actions, we focus on affine Poisson spaces which include in particular the linear and affine Poisson structures on duals of locally convex Lie algebras. As an interesting byproduct of our approach, we can associate to an invariant symmetric bilinear form κ\kappa on a Lie algebra \g and a κ\kappa-skew-symmetric derivation DD a weak affine Poisson structure on \g itself. This leads naturally to a concept of a Hamiltonian GG-action on a weak Poisson manifold with a \g-valued momentum map and hence to a generalization of quasi-hamiltonian group actions

    Small oscillations and the Heisenberg Lie algebra

    Full text link
    The Adler Kostant Symes [A-K-S] scheme is used to describe mechanical systems for quadratic Hamiltonians of R2n\mathbb R^{2n} on coadjoint orbits of the Heisenberg Lie group. The coadjoint orbits are realized in a solvable Lie algebra g\mathfrak g that admits an ad-invariant metric. Its quadratic induces the Hamiltonian on the orbits, whose Hamiltonian system is equivalent to that one on R2n\mathbb R^{2n}. This system is a Lax pair equation whose solution can be computed with help of the Adjoint representation. For a certain class of functions, the Poisson commutativity on the coadjoint orbits in g\mathfrak g is related to the commutativity of a family of derivations of the 2n+1-dimensional Heisenberg Lie algebra hn\mathfrak h_n. Therefore the complete integrability is related to the existence of an n-dimensional abelian subalgebra of certain derivations in hn\mathfrak h_n. For instance, the motion of n-uncoupled harmonic oscillators near an equilibrium position can be described with this setting.Comment: 17 pages, it contains a theory about small oscillations in terms of the AKS schem

    Darboux-integration of id\rho/dt=[H,f(\rho)]

    Full text link
    A Darboux-type method of solving the nonlinear von Neumann equation iρ˙=[H,f(ρ)]i\dot \rho=[H,f(\rho)], with functions f(ρ)f(\rho) commuting with ρ\rho, is developed. The technique is based on a representation of the nonlinear equation by a compatibility condition for an overdetermined linear system. von Neumann equations with various nonlinearities f(ρ)f(\rho) are found to possess the so-called self-scattering solutions. To illustrate the result we consider the Hamiltonian HH of a one-dimensional harmonic oscillator and f(ρ)=ρq2ρq1f(\rho)=\rho^q-2\rho^{q-1} with arbitary real qq. It is shown that self-scattering solutions possess the same asymptotics for all qq and that different nonlinearities may lead to effectively indistinguishable evolutions. The result may have implications for nonextensive statistics and experimental tests of linearity of quantum mechanics.Comment: revtex, 5 pages, 2 eps figures, submitted to Phys.Lett.A infinite-dimensional example is adde

    Microscopic Foundation of Nonextensive Statistics

    Get PDF
    Combination of the Liouville equation with the q-averaged energy Uq=qU_q = _q leads to a microscopic framework for nonextensive q-thermodynamics. The resulting von Neumann equation is nonlinear: iρ˙=[H,ρq]i\dot\rho=[H,\rho^q]. In spite of its nonlinearity the dynamics is consistent with linear quantum mechanics of pure states. The free energy Fq=UqTSqF_q=U_q-TS_q is a stability function for the dynamics. This implies that q-equilibrium states are dynamically stable. The (microscopic) evolution of ρ\rho is reversible for any q, but for q1q\neq 1 the corresponding macroscopic dynamics is irreversible.Comment: revte

    Assessing architectural evolution: A case study

    Get PDF
    This is the post-print version of the Article. The official published can be accessed from the link below - Copyright @ 2011 SpringerThis paper proposes to use a historical perspective on generic laws, principles, and guidelines, like Lehman’s software evolution laws and Martin’s design principles, in order to achieve a multi-faceted process and structural assessment of a system’s architectural evolution. We present a simple structural model with associated historical metrics and visualizations that could form part of an architect’s dashboard. We perform such an assessment for the Eclipse SDK, as a case study of a large, complex, and long-lived system for which sustained effective architectural evolution is paramount. The twofold aim of checking generic principles on a well-know system is, on the one hand, to see whether there are certain lessons that could be learned for best practice of architectural evolution, and on the other hand to get more insights about the applicability of such principles. We find that while the Eclipse SDK does follow several of the laws and principles, there are some deviations, and we discuss areas of architectural improvement and limitations of the assessment approach
    corecore