79 research outputs found

    Analysis of laser radiation using the Nonlinear Fourier transform

    Get PDF
    Modern high-power lasers exhibit a rich diversity of nonlinear dynamics, often featuring nontrivial co-existence of linear dispersive waves and coherent structures. While the classical Fourier method adequately describes extended dispersive waves, the analysis of time-localised and/or non-stationary signals call for more nuanced approaches. Yet, mathematical methods that can be used for simultaneous characterisation of localized and extended fields are not yet well developed. Here, we demonstrate how the Nonlinear Fourier transform (NFT) based on the Zakharov-Shabat spectral problem can be applied as a signal processing tool for representation and analysis of coherent structures embedded into dispersive radiation. We use full-field, real-time experimental measurements of mode-locked pulses to compute the nonlinear pulse spectra. For the classification of lasing regimes, we present the concept of eigenvalue probability distributions. We present two field normalisation approaches, and show the NFT can yield an effective model of the laser radiation under appropriate signal normalisation conditions

    Grading of carotid artery stenosis with multidetector-row CT angiography: visual estimation or caliper measurements?

    Get PDF
    To assess the optimal method for grading carotid artery stenosis with computed tomographic angiography (CTA), we compared visual estimation to caliper measurements, and determined inter-observer variability and agreement relative to digital subtraction angiography (DSA). We included 46 patients with symptomatic carotid stenosis for whom CTA and DSA of 55 carotids was available. Stenosis quantification by CTA using visual estimation (CTAVE) (method 1) was compared with caliper measurements using subjectively optimized wide window settings (method 2) or predefined contrast-dependent narrow window settings (method 3). Measurements were independently performed by two radiologists and two residents. To determine accuracy and inter-observer variability, we calculated linear weighted kappa, performed a Bland-Altman analysis and calculated mean difference (bias) and standard deviation of differences (SDD). For inter-observer variability, kappa analysis was “very good” (0.85) for expert observers using CTAVE compared with “good” (0.61) for experts using DSA. Compared with DSA, method 1 led to overestimation (bias 5.8–8.0%, SDD 10.6–14.4), method 3 led to underestimation (bias −6.3 to −3.0%, SDD 13.0–18.1). Measurement variability between DSA and visual estimation on CTA (SDD 11.5) is close to the inter-observer variability of repeated measurements on DSA that we found in this study (SDD 11.6). For CTA of carotids, stenosis grading based on visual estimation provides better agreement to grading by DSA compared with stenosis grading based on caliper measurements

    Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    Get PDF
    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach

    Diagnostic accuracy of contrast-enhanced MR angiography in severe carotid stenosis: meta-analysis with metaregression of different techniques

    Get PDF
    Contrast-enhanced magnetic resonance angiography (CE-MRA) has become a well-established noninvasive imaging method for the assessment of severe carotid stenosis (70–99% by NASCET criteria). However, CE-MRA is not a standardised technique, but encompasses different concurrent techniques. This review analyses possible differences. A bivariate random effects meta-analysis of 17 primary diagnostic accuracy studies confirmed a high pooled sensitivity of 94.3% and specificity of 93.0% for carotid CE-MRA in severe carotid stenosis. Sensitivity was fairly uniform among the studies, while specificity showed significant variation (I2 = 73%). Metaregressions found significant differences for specificity with two covariates: specificity was higher when using not only maximum intensity projection (MIP) images, but also three-dimensional (3D) images (P = 0.01). Specificity was also higher with electronic images than with hardcopies (P = 0.02). The timing technique (bolus-timed, fluoroscopically triggered or time-resolved) did not result in any significant differences in diagnostic accuracy. Some nonsignificant trends were found for the percentages of severe carotid disease, acquisition time and voxel size. In conclusion, in CE-MRA of severe carotid stenosis the three major timing techniques yield comparably high diagnostic accuracy, electronic images are more specific than hardcopies, and 3D images should be used in addition to MIP images to increase the specificity

    Control of Flowering in Strawberries

    Get PDF
    Strawberries (Fragaria sp.) are small perennial plants capable of both sexual reproduction through seeds and clonal reproduction via runners. Because vegetative and generative developmental programs are tightly connected, the control of flowering is presented here in the context of the yearly growth cycle. The rosette crown of strawberry consists of a stem with short internodes produced from the apical meristem. Each node harbors one trifoliate leaf and an axillary bud. The fate of axillary buds is dictated by environmental conditions; high temperatures and long days (LDs) promote axillary bud development into runners, whereas cool temperature and short days (SDs) favor the formation of branch crowns. SDs and cool temperature also promote flowering; under these conditions, the main shoot apical meristem is converted into a terminal inflorescence, and vegetative growth is continued from the uppermost axillary branch crown. The environmental factors that regulate vegetative and generative development in strawberries have been reasonably well characterized and are reviewed in the first two chapters. The genetic basis of the physiological responses in strawberries is much less clear. To provide a point of reference for the flowering pathways described in strawberries so far, a short review on the molecular mechanisms controlling flowering in the model plant Arabidopsis is given. The last two chapters will then describe the current knowledge on the molecular mechanisms controlling the physiological responses in strawberries.Peer reviewe
    corecore