1,390 research outputs found

    Neutrino oscillation probabilities: Sensitivity to parameters

    Get PDF
    We study in detail the sensitivity of neutrino oscillation probabilities to the fundamental neutrino parameters and their possible determination through experiments. The first part of the paper is devoted to the broad theme of isolating regions in the neutrino (and anti-neutrino) energy and propagation length that are sensitive to the oscillation parameters. Such a study is relevant to neutrinos both from the Earth's atmosphere or from a neutrino factory. For completeness we discuss the sensitivity, however small, to the parameters involved in a three-generation framework, and to the Earth matter density profile. We then study processes relevant to atmospheric neutrinos which are sensitive to and allow precision measurements of the mixing angle theta_23 and mass-squared difference delta_32 apart from the mixing angle theta_13. Crucial to this analysis is charge identification; detectors having this capability can isolate these matter effects. In particular, we address the issue of using matter effects to determine whether the mixing angle theta_23 is maximal, and, if not, to explore how well its octant can be determined. When realistic detector resolutions are included, we find that deviations of about 15% (20%) from a maximal value of sin^2 theta_23=1/2 can be measured at 95% (99%) CL provided theta_13 is non-zero, sin^2 theta_13 >= 0.015, and the neutrino mass ordering is normal, with fairly large exposures of 1000 kton-years.Comment: 37 pages Latex file, 30 eps figure files; minor typos fixe

    Object Segmentation and Ground Truth in 3D Embryonic Imaging

    Get PDF
    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets

    Scaling of fluctuation for Directed polymers with random interaction

    Get PDF
    Using a finite size scaling form for reunion probability, we show numerically the existence of a binding-unbinding transition for Directed polymers with random interaction. The cases studied are (A1) two chains in 1+1 dimensions, (A2) two chains in 2+1 dimensions and (B) three chains in 1+1 dimensions. A similar finite size scaling form for fluctuation establishes a disorder induced transition with identical exponents for cases A2 and B. The length scale exponents in all the three cases are in agreement with previous exact renormalization group results.Comment: Revtex, 4 postscript figures available on request (email: [email protected]); To appear in J. Phys. A Letter

    New Criticality of 1D Fermions

    Full text link
    One-dimensional massive quantum particles (or 1+1-dimensional random walks) with short-ranged multi-particle interactions are studied by exact renormalization group methods. With repulsive pair forces, such particles are known to scale as free fermions. With finite mm-body forces (m = 3,4,...), a critical instability is found, indicating the transition to a fermionic bound state. These unbinding transitions represent new universality classes of interacting fermions relevant to polymer and membrane systems. Implications for massless fermions, e.g. in the Hubbard model, are also noted. (to appear in Phys. Rev. Lett.)Comment: 10 pages (latex), with 2 figures (not included

    Study of ABCB1 polymorphism (C3435T) in HIV-1-infected individuals from South India

    Get PDF
    Studies on P-glycoprotein expression and function have revealed that a single nucleotide polymorphism (SNP) in the human ABCB1 gene at 3435 (C > T) results in altered expression and function of P-glycoprotein [1, 2].There have been reports of lower nelfinavir and efavirenz (EFV) concentrations associated with TT genotypes (mutant) of ABCB1 C3435T polymorphism [3, 4].Frequency distribution of this polymorphism is known to vary across populations [3, 5, 6]. We report the genotype distribution of ABCB1 C3435T in 179 individuals (126 HIV-infected and 53 healthy) from South India. The polymorphism was correlated with plasma 12 h EFV and 2 h nevirapine (NVP) concentrations in 55 and 71 patients, respectively. Plasma EFV and NVP were estimated by HPLC [7, 8]. Genotyping was carried out by PCR-RFLP [9]

    Constraints on mixing angles of Majorana neutrinos

    Get PDF
    By combining the inputs from the neutrinoless double beta decay and the fits of cosmological models of dark matter with solar and atmospheric neutrino data, we obtain constraints on two of the mixing angles of Majorana neutrinos, which become stronger when coupled with the reactor neutrino data. These constraints are strong enough to rule out Majorana neutrinos if the small angle solution of solar neutrino puzzle is borne out.Comment: Some corrections and clarifications adde

    Doping the holographic Mott insulator

    Full text link
    Mott insulators form because of strong electron repulsions, being at the heart of strongly correlated electron physics. Conventionally these are understood as classical "traffic jams" of electrons described by a short-ranged entangled product ground state. Exploiting the holographic duality, which maps the physics of densely entangled matter onto gravitational black hole physics, we show how Mott-insulators can be constructed departing from entangled non-Fermi liquid metallic states, such as the strange metals found in cuprate superconductors. These "entangled Mott insulators" have traits in common with the "classical" Mott insulators, such as the formation of Mott gap in the optical conductivity, super-exchange-like interactions, and form "stripes" when doped. They also exhibit new properties: the ordering wave vectors are detached from the number of electrons in the unit cell, and the DC resistivity diverges algebraically instead of exponentially as function of temperature. These results may shed light on the mysterious ordering phenomena observed in underdoped cuprates.Comment: 27 pages, 9 figures. Accepted in Nature Physic

    Theory of tricriticality for miscut surfaces

    Get PDF
    We propose a theory for the observed tricriticality in the orientational phase diagram of Si(113) misoriented towards [001]. The systems seems to be at or close to a very special point for long range interactions.Comment: Revtex, 1 ps figur
    corecore