467 research outputs found
Casimir interactions of an object inside a spherical metal shell
We investigate the electromagnetic Casimir interactions of an object
contained within an otherwise empty, perfectly conducting spherical shell. For
a small object we present analytical calculations of the force, which is
directed away from the center of the cavity, and the torque, which tends to
align the object opposite to the preferred alignment outside the cavity. For a
perfectly conducting sphere as the interior object, we compute the corrections
to the proximity force approximation (PFA) numerically. In both cases the
results for the interior configuration match smoothly onto those for the
corresponding exterior configuration.Comment: 4 pages, 3 figure
Casimir potential of a compact object enclosed by a spherical cavity
We study the electromagnetic Casimir interaction of a compact object
contained inside a closed cavity of another compact object. We express the
interaction energy in terms of the objects' scattering matrices and translation
matrices that relate the coordinate systems appropriate to each object. When
the enclosing object is an otherwise empty metallic spherical shell, much
larger than the internal object, and the two are sufficiently separated, the
Casimir force can be expressed in terms of the static electric and magnetic
multipole polarizabilities of the internal object, which is analogous to the
Casimir-Polder result. Although it is not a simple power law, the dependence of
the force on the separation of the object from the containing sphere is a
universal function of its displacement from the center of the sphere,
independent of other details of the object's electromagnetic response.
Furthermore, we compute the exact Casimir force between two metallic spheres
contained one inside the other at arbitrary separations. Finally, we combine
our results with earlier work on the Casimir force between two spheres to
obtain data on the leading order correction to the Proximity Force
Approximation for two metallic spheres both outside and within one another.Comment: 12 pages, 6 figure
Casimir Force at a Knife's Edge
The Casimir force has been computed exactly for only a few simple geometries,
such as infinite plates, cylinders, and spheres. We show that a parabolic
cylinder, for which analytic solutions to the Helmholtz equation are available,
is another case where such a calculation is possible. We compute the
interaction energy of a parabolic cylinder and an infinite plate (both perfect
mirrors), as a function of their separation and inclination, and ,
and the cylinder's parabolic radius . As , the proximity force
approximation becomes exact. The opposite limit of corresponds to a
semi-infinite plate, where the effects of edge and inclination can be probed.Comment: 5 pages, 3 figures, uses RevTeX; v2: expanded conclusions; v3: fixed
missing factor in Eq. (3) and incorrect diagram label (no changes to
results); v4: fix similar factor in Eq. (16) (again no changes to results
Constraints on stable equilibria with fluctuation-induced forces
We examine whether fluctuation-induced forces can lead to stable levitation.
First, we analyze a collection of classical objects at finite temperature that
contain fixed and mobile charges, and show that any arrangement in space is
unstable to small perturbations in position. This extends Earnshaw's theorem
for electrostatics by including thermal fluctuations of internal charges.
Quantum fluctuations of the electromagnetic field are responsible for
Casimir/van der Waals interactions. Neglecting permeabilities, we find that any
equilibrium position of items subject to such forces is also unstable if the
permittivities of all objects are higher or lower than that of the enveloping
medium; the former being the generic case for ordinary materials in vacuum.Comment: 4 pages, 1 figur
Classical Casimir interaction in the plane-sphere geometry
We study the Casimir interaction in the plane-sphere geometry in the
classical limit of high temperatures. In this limit, the finite conductivity of
the metallic plates needs to be taken into account. For the Drude model, the
classical Casimir interaction is nevertheless found to be independent of the
conductivity so that it can be described by a single universal function
depending only on the aspect ratio where is the interplate distance
and the sphere radius. This universal function differs from the one found
for perfect reflectors and is in principle amenable to experimental tests. The
asymptotic approach of the exact result to the Proximity Force Approximation
appears to be well fitted by polynomial expansions in .Comment: Updated version with minor modifications and addition of a referenc
Surveillance of sight loss due to delay in ophthalmic treatment or review:frequency, cause and outcome
Purpose: To determine the frequency of patients suffering harm due to delay in ophthalmic care in the UK over a 12-month period.Methods: Patients with deterioration in vision in at least one eye of 3 lines of Snellen acuity or 15 letters on ETDRS chart or deterioration in visual field deviation of 3 decibels due to health service initiated delay in review or care were ascertained through the BOSU using prospective active surveillance involving all UK consultant ophthalmologists. Demographic details, diagnosis, cause and length of delay, and vision loss were then sought by questionnaire.Results: 238 cases reported between March 2015 and February 2016. 197/238 questionnaires were returned (83%). Twenty-eight reports were out of the study period or did not meet the case definition. Median age was 76 years (range: 1 to 98 years). Median delay was 22 weeks (range: 2 days to 5½ years). Seventy two per cent experienced permanent reduction in visual acuity, 23% permanent deterioration in visual field. Main diagnoses were Glaucoma 42%, Age-related Macular Degeneration (AMD) 23%, and Diabetic Retinopathy (DR) 16%. Eighteen patients were eligible for Severely Sight Impaired (SSI) or Sight Impaired (SI) registration. Main causes were delayed follow-up (76%), lost referral (7%), and delayed treatment (8%).Conclusion: Patients are suffering preventable harm due to health service initiated delay leading to permanently reduced vision. This is occurring in patients of all ages, but most consistently in those with chronic conditions. Delayed follow-up or review is the cause in the majority of cases indicating a lack of capacity within the hospital eye service.</p
Novel architecture for human re-identification with a two-stream neural network and attention ,echanism
This paper proposes a novel architecture that utilises an attention mechanism in conjunction with multi-stream convolutional neural networks (CNN) to obtain high accuracy in human re-identification (Reid). The proposed architecture consists of four blocks. First, the pre-processing block prepares the input data and feeds it into a spatial-temporal two-stream CNN (STC) with two fusion points that extract the spatial-temporal features. Next, the spatial-temporal attentional LSTM block (STA) automatically fine-tunes the extracted features and assigns weight to the more critical frames in the video sequence by using an attention mechanism. Extensive experiments on four of the most popular datasets support our architecture. Finally, the results are compared with the state of the art, which shows the superiority of this approach
On the accuracy of the PFA: analogies between Casimir and electrostatic forces
We present an overview of the validity of the Proximity Force Approximation
(PFA) in the calculation of Casimir forces between perfect conductors for
different geometries, with particular emphasis for the configuration of a
cylinder in front of a plane. In all cases we compare the exact numerical
results with those of PFA, and with asymptotic expansions that include the next
to leading order corrections. We also discuss the similarities and differences
between the results for Casimir and electrostatic forces.Comment: 17 pages, 5 figures, Proceedings of the meeting "60 years of Casimir
effect", Brasilia, 200
Fluctuation induced quantum interactions between compact objects and a plane mirror
The interaction of compact objects with an infinitely extended mirror plane
due to quantum fluctuations of a scalar or electromagnetic field that scatters
off the objects is studied. The mirror plane is assumed to obey either
Dirichlet or Neumann boundary conditions or to be perfectly reflecting. Using
the method of images, we generalize a recently developed approach for compact
objects in unbounded space [1,2] to show that the Casimir interaction between
the objects and the mirror plane can be accurately obtained over a wide range
of separations in terms of charge and current fluctuations of the objects and
their images. Our general result for the interaction depends only on the
scattering matrices of the compact objects. It applies to scalar fields with
arbitrary boundary conditions and to the electromagnetic field coupled to
dielectric objects. For the experimentally important electromagnetic Casimir
interaction between a perfectly conducting sphere and a plane mirror we present
the first results that apply at all separations. We obtain both an asymptotic
large distance expansion and the two lowest order correction terms to the
proximity force approximation. The asymptotic Casimir-Polder potential for an
atom and a mirror is generalized to describe the interaction between a
dielectric sphere and a mirror, involving higher order multipole
polarizabilities that are important at sub-asymptotic distances.Comment: 19 pages, 7 figure
Study of Optimal Perimetric Testing In Children (OPTIC): Development and feasibility of the kinetic perimetry reliability measure (KPRM)
INTRODUCTION: Interpretation of perimetric findings, particularly in children, relies on accurate assessment of test reliability, yet no objective measures of reliability exist for kinetic perimetry. We developed the kinetic perimetry reliability measure (KPRM), a quantitative measure of perimetric test reproducibility/reliability and report here its feasibility and association with subjective assessment of reliability. METHODS: Children aged 5-15 years, without an ophthalmic condition that affects the visual field, were recruited from Moorfields Eye Hospital and underwent Goldmann perimetry as part of a wider research programme on perimetry in children. Subjects were tested with two isopters and the blind spot was plotted, followed by a KPRM. Test reliability was also scored qualitatively using our examiner-based assessment of reliability (EBAR) scoring system, which standardises the conventional clinical approach to assessing test quality. The relationship between KPRM and EBAR was examined to explore the use of KPRM in assessing reliability of kinetic fields. RESULTS: A total of 103 children (median age 8.9 years; IQR: 7.1 to 11.8 years) underwent Goldmann perimetry with KPRM and EBAR scoring. A KPRM was achieved by all children. KPRM values increased with reducing test quality (Kruskal-Wallis, p=0.005), indicating greater testretest variability, and reduced with age (linear regression, p=0.015). One of 103 children (0.97%) demonstrated discordance between EBAR and KPRM. CONCLUSION: KPRM and EBAR are distinct but complementary approaches. Though scores show excellent agreement, KPRM is able to quantify withintest variability, providing data not captured by subjective assessment. Thus, we suggest combining KPRM with EBAR to aid interpretation of kinetic perimetry test reliability in children
- …
