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Classical Casimir interaction in the plane-sphere geometry
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We study the Casimir interaction in the plane-sphere geometry in the classical limit of high temperatures. In
this limit, the finite conductivity of the metallic plates needs to be taken into account. For the Drude model,
the classical Casimir interaction is nevertheless found to be independent of the conductivity so that it can be
described by a single universal function depending only on the aspect ratio x = L/R, where L is the interplate
distance and R is the sphere radius. This universal function differs from the one found for perfect reflectors and
is in principle amenable to experimental tests. The asymptotic approach of the exact result to the proximity force
approximation appears to be well fitted by polynomial expansions in ln x.
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I. INTRODUCTION

The Casimir effect arises due to the confinement of the
quantum fluctuations of electromagnetic fields between re-
flecting bodies. Its discussion is often focused on the ideal case
introduced by H. Casimir [1] of a pair of perfectly reflecting
parallel plates at zero temperature. In this case, the energy
is given by a universal expression EP

0 = −h̄cπ2A/720L3

depending only on geometrical parameters, the mirrors’
separation L and surface A, and fundamental constants h̄ and
c. However, this idealization does not hold for any experiment
and reliable descriptions of the Casimir interaction have to
account for the optical response of matter [2,3].

In the present article, we want to study another case
where the Casimir interaction becomes universal, namely,
the high-temperature limit indicated in the following by the
subscript HT. This limit has been thoroughly studied for two
perfectly reflecting parallel plates [4–6] where the free energy
FP

HT = −ζ (3)kBT A/8πL2 depends only on temperature T

and geometrical parameters L and A. ζ is the Riemann
function and ζ (3) � 1.202 and the superscript P refers to
perfect mirrors. When the Drude model is used for describing
the effect of conduction electrons in metallic mirrors, the free
energy FD

HT = FP
HT/2 is one half of that obtained for perfect

mirrors [7–9] (the superscript D refers to the Drude model).
This reduction by a factor of 2 at large temperatures,

independent of the parameters of the Drude model (see below),
is confirmed by microscopic descriptions of the interaction
between two metallic bulks [10–12]. This difference can in
principle be tested at room temperature by measuring the force
at large distances. Experiments are difficult in this domain be-
cause the force decreases with distance. However, experiments
have recently been performed at distances up to 7 μm where
the thermal effect is large. The results have been interpreted by
the authors [13] as being in agreement with the Drude model
prediction once an electrostatic patch contribution is subtracted
[14]. This conclusion stands in contradiction with the results of

*Present address: ISIS—Université de Strasbourg.

other Casimir force measurements, performed at smaller dis-
tances, up to 0.75 μm, which were interpreted by their authors
as excluding the dissipative Drude model and agreeing with
the lossless plasma model [15]. This contradiction remains a
matter of debate (see discussions and references in [16,17]).

It is also worth stressing that most precise experiments are
performed in the plane-sphere geometry. The evaluation of the
force is often done through the so-called proximity force ap-
proximation (PFA) [18], which amounts to averaging the force
between parallel plates over the distribution of local interplate
distances. This trivial treatment of geometry cannot reproduce
the rich relation expected between Casimir effect and geometry
[17,19–21]. Theoretical treatments going beyond the PFA have
recently been proposed, in particular through a multipolar
expansion well adapted to the plane-sphere geometry. In the
following, we will use results known for perfect or metallic
mirrors coupled to electromagnetic fields [22,23].

The aim of the present article is to investigate the classical
Casimir interaction for the geometry of a plane and a sphere
with an arbitrary aspect ratio. We will focus our attention on
the models of perfect mirrors and dissipative mirrors and use
scattering methods discussed in [23]. The results will turn
out to be given by universal functions of the aspect ratio, for
dissipative as well as perfect mirrors, with the two functions
differing from each other. The limit of high temperatures will
allow us to reach a much better numerical accuracy than in
previous works [23]. This improvement in the accuracy will
be used to sharpen the discussion of the asymptotic approach
of the exact result to the PFA. This asymptotic behavior will
appear to be well fitted by polynomial expansions of the
logarithm of the aspect ratio.

II. THE SCATTERING FORMULA AT
THE CLASSICAL LIMIT

We start from the Matsubara formula giving the Casimir
free energy F between a plane and a sphere [23]:

F = kBT

′∑
n

ln detD(iξn),

(1)D = I − R2e
−KLR1e

−KL.
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Here ξn = 2πnkBT/h̄ are the Matsubara frequencies and the
prime indicates a sum over integers n = 0 . . . ∞ with a factor
1
2 for n = 0; R1 and R2 are the reflection operators on the
plane and the sphere, respectively, discussed below in terms of
Fresnel reflection amplitudes and Mie scattering amplitudes;
e−KL describes the one-way propagation on the distance L =
L + R between the center of the sphere and the plane, with
R being the radius of the sphere and L being the minimal
distance between the plane and the sphere; K =

√
k2 + ξ 2/c2

is the longitudinal wave vector after a Wick rotation from real
to imaginary frequencies, with k being the modulus of the
transverse wave vector.

The nonzero Matsubara frequencies ξn�=0 � 2πkBT/h̄ in-
crease with temperature and their contributions to the sum
Eq. (1) become exponentially small because of the propaga-
tion factor e−KL with K � ξ/c � 2πkBT/h̄c. At the high-
temperature limit kBT � h̄c/L, the free energy is dominated
by the first term n = 0 in the sum Eq. (1) and, therefore, it is
proportional to temperature:

FHT = −kBT �, � = − 1
2 ln detD(0),

(2)
D(0) = I − RS(0)e−kLRP (0)e−kL.

� is a dimensionless function of the parameters which does not
depend on temperature. Hence the entropy S is independent
of temperature and the energy E vanishes:

SHT = −∂T F = kB�,
(3)

EHT = FHT + T SHT = 0.

This implies that the classical limit of the Casimir interaction
has a purely entropic origin [24,25].

The Drude model is the simplest description of a dissipative
mirror. It corresponds to a dielectric function ε[iξ ] = 1 + σ/ξ

at imaginary frequencies ω = iξ , without a magnetic response
(μ = 1). σ [iξ ] = ω2

p/(γ + ξ ) measures the conductivity asso-
ciated with conduction electrons (the conductivity in SI units
is ε0σ ). The Drude model is characterized by two dimensional
parameters, the squared plasma frequency ω2

p, proportional to
the density of the conduction electrons, and their relaxation
rate γ . It meets the important property of ordinary metals
to have a finite static conductivity σ0 = ω2

p/γ . The lossless
plasma model γ → 0 corresponds to an infinite value for σ0,
in contradiction with tabulated optical data at low frequencies
[26,27].

The Fresnel reflection amplitudes rTE and rTM for plane
waves with polarization TE or TM are well known from studies
of the plane-plane geometry [7–9]. They are rP

TE → −1 and
rP

TM → 1 for perfect mirrors whereas they go to rD
TE → 0 and

rD
TM → 1 for the Drude model at low frequencies. For the

lossless plasma model, they are found to interpolate between
perfect and Drude models, a property found also below for
the Mie amplitudes. The disappearance of the TE reflection
amplitude is responsible for the ratio 2 between the classical
limits of the free energies obtained from perfect and Drude
models in the plane-plane geometry.

A similar discrepancy arises also for the Mie amplitudes a�

and b� which describe the scattering on the sphere [24]. For per-
fect mirrors and low frequencies, we get aP

� � (−1)�(�+1)ξ̃ (2�+1)

�(2�+1)!!(2�−1)!!

and bP
� � − aP

� �

�+1 . The electric and magnetic multipoles a� and

b� progressively decrease with increasing multipole index �,
but they have the same power law in the reduced frequency
ξ̃ = ξR/c for a given �. The situation is different for the Drude

model where aD
� � aP

� and bD
� � bP

� σ̃0 ξ̃

(2�+3)(2�+1) (σ̃0 = σ0R/c is
the reduced frequency associated with the static conductivity).
Incidentally, the results for the lossless plasma model are
found to interpolate between perfect and Drude models: b�

has the same form as bP
� (bD

� ) for large spheres (small spheres).
The crossover between these two regimes is determined by
the parameter ω̃p being, respectively, larger or smaller than 1
(ω̃p = ωpR/c is the reduced plasma frequency).

The function �P is a universal expression of the aspect ratio
for perfect mirrors, as there exist no other parameters. The
discussion of the preceding paragraph entails that it is also the
case for the function �D calculated for Drude mirrors [28],
although the latter is associated with dimensional parameters
like σ0. As a matter of fact, b� is negligible with respect to
a� for any given value of �, and it follows that the classical
high-temperature limit is the same as if bD

� were simply zero.
In spite of the fact that �D and �P are universal functions
of the aspect ratio, these two functions differ. As another
important consequence of this discussion is that the lossless
plasma model result does not obey the universality property
met by perfect as well as Drude mirrors. For this reason, we
will not discuss this model any longer in this article.

III. NUMERICAL EVALUATIONS AND RESULTS

In the remainder of this article, we present the results of the
numerical evaluation of the functions �D,P which determine
the classical Casimir free energy between a plane and a sphere,
for Drude and perfect mirrors, respectively. We write these
functions through a comparison with the often used PFA
approximation (the superscript D,P means D or P):

�D,P(x) = CD,P

x

D,P(x), x ≡ L

R
,

(4)

CD ≡ ζ (3)

8
, CP ≡ ζ (3)

4
.

FIG. 1. (Color online) Classical (high-temperature) Casimir in-
teraction between plane and spherical mirrors, represented by the ratio

D,P of the exact result to the PFA result vs the aspect ratio x = L/R;
the full red line corresponds to Drude mirrors and the dashed blue
line corresponds to perfect mirrors.
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The first factors in the expressions of �D,P are the PFA results
while the second ones, 
D,P, represent deviations from PFA.
The factors 
D,P go to one for large spheres x → 0, which
confirms the validity of PFA as an asymptotic approximation.
The fact that �D,P and 
D,P depend on a single geometrical
parameter, the aspect ratio x, corresponds to the universality
discussed above.

The explicit numerical evaluation proceeds as in [23].
Due to the relatively simple form of the matrices in the
low-frequency limit, the numerics can be pushed farther than
for the general case. Precisely, the computation can be pushed
to a larger maximum value �max for the multipole index �, and
it follows that the numerical results are now more accurate for
small values of the aspect ratio x. The results of the numerical
evaluations shown on Fig. 1 have been calculated with �max

up to 5000 at our minimal value for the aspect ratio 10−3. The
numerical accuracy δ
 is estimated to be of the order of 10−4

at x = 10−3 and of 10−8 at x = 2 × 10−3.
Though both of them are universal, the functions 
D(x) and


P(x) drawn in Fig. 1 do not coincide. In other words, the ratio
�P(x)/�D(x) = 2
P(x)/
D(x) between Casimir free energies

FIG. 2. (Color online) Deviation from PFA of the classical
Casimir interaction between plane and spherical mirrors, described
by the additive correction βD,P(x) vs ln x (upper plot) and the

logarithmic derivatives − dβD,P

d ln x
= −x

dβD,P

dx
(lower plot); the full

red lines correspond to Drude mirrors and the dashed blue lines
correspond to perfect mirrors.

calculated for perfect and Drude mirrors is itself a function of
x. This ratio reaches the value 2 at the PFA limit (x → 0), as
known from the studies on plane-plane geometry [7], and the
value 3/2 at large distances (x → ∞) [23].

IV. ASYMPTOTIC APPROACH TO PFA

We finally discuss the asymptotic approach to PFA for small
values of x. To this aim, we introduce another representation
of the deviation from PFA:


D,P(x) ≡ 1 + xβD,P(x). (5)

βD,P(x) is the slope of the line which joins the points (0,1) to
(x,
D,P(x)) on the plots of Fig. 1. It may also be thought of as
an additive correction to PFA in Eq. (4):

�D,P(x) = CD,P

(
1

x
+ βD,P(x)

)
. (6)

The numerical accuracy δ
 discussed above is now translated
into a numerical accuracy δβ = δ
/x for β. This accuracy δβ

is estimated to be of the order of 10−1 at x = 10−3 and of
5 × 10−6 at x = 2 × 10−3. The following discussions of the
asymptotic approach to PFA are possible only thanks to this
good accuracy.

The quantities βD,P are shown as the upper plot in Fig. 2
for Drude and perfect mirrors, as functions of ln x. The lower

FIG. 3. (Color online) Best fits of the numerical results with the
trial functions Eq. (8) for the Drude (red lines, upper plot) and perfect
mirrors (blue lines, lower plot); the full, dotted, and dashed lines
correspond, respectively, to βl , βx , and βm; the full circles correspond
to numerical points not used for the fits; the insets zoom on the
smallest values of x.
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plot in Fig. 2 represents the quantities − dβD,P

d ln x
which appear in

the Casimir force:

F D,P(x) = −CD,PkBT

L

(
1

x
− dβD,P(x)

d ln x

)
. (7)

The plots in Fig. 2 suggest that the asymptotic approach to
PFA is well described for small values of x by a polynomial
expansion in the variable ln x. In order to check this idea,
we have performed best fits of the numerical results with the
following trial functions, defined with the same number of
parameters:

βl(x) = a0 + a1 ln x + a2 ln2 x + a3 ln3 x,

βx(x) = b0 + b1x + b2x
2 + b3x

3, (8)

βm(x) = c0 + c1 ln x + c2x + c3x
2.

The first one, βl , is a polynomial form in the variable ln x as
suggested by Fig. 2 (see also [29]). The second one, βx , is
a polynomial form in the variable x, which was sufficient to
represent functions ρ obtained from older calculations with a
lesser accuracy [22,30]. It corresponds to the free energy being
a Laurent series in the variable x. The third one, βm, is a mixed
form which results, in the classical limit (high temperatures),
from the assumption [31] that the force (not the free energy)
may be written as a Laurent series in x.

In each case, the best-fit functions are defined from the
numerical results obtained in the window ln x ∈ [−5, − 3].
Their comparison in Fig. 3 with the numerical values obtained
in a broader window shows that βl is a better representation of
the numerical results than βm, itself better than βx . In particular,
the insets in Fig. 3 show the deviations of the best fits of βx

and βm from the exact results at the smallest values of the
aspect ratio ln x ∈ [−6.2, − 5]. The assumptions that the free
energy or force is a Laurent series in x cannot be considered
as generally valid.

The difference between the cases of Drude and per-
fect mirrors is in principle amenable to experimental tests.
Direct comparison with exact calculations would require
measurements at large distances (high-temperature limit). This
challenge could be met with experimental parameters not so
far from those in the experiment [13].
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