1,159 research outputs found
Ice XV: A New Thermodynamically Stable Phase of Ice
A new phase of ice, named ice XV, has been identified and its structure determined by neutron diffraction. Ice XV is the hydrogen-ordered counterpart of ice VI and is thermodynamically stable at temperatures below similar to 130 K in the 0.8 to 1.5 GPa pressure range. The regions of stability in the medium pressure range of the phase diagram have thus been finally mapped, with only hydrogen-ordered phases stable at 0 K. The ordered ice XV structure is antiferroelectric (P1), in clear disagreement with recent theoretical calculations predicting ferroelectric ordering (Cc)
Temperature and field dependence of the phase separation, structure, and magnetic ordering in LaCaMnO, (, 0.50, and 0.53)
Neutron powder diffraction measurements, combined with magnetization and
resistivity data, have been carried out in the doped perovskite
LaCaMnO (, 0.50, and 0.53) to elucidate the structural,
magnetic, and electronic properties of the system around the composition
corresponding to an equal number of Mn3+ and Mn4+. At room temperature all
three samples are paramagnetic and single phase, with crystallographic symmetry
Pnma. The samples then all become ferromagnetic (FM) at K. At
K, however, a second distinct crystallographic phase (denoted A-II)
begins to form. Initially the intrinsic widths of the peaks are quite large,
but they narrow as the temperature decreases and the phase fraction increases,
indicating microscopic coexistence. The fraction of the sample that exhibits
the A-II phase increases with decreasing temperature and also increases with
increasing Ca doping, but the transition never goes to completion to the lowest
temperatures measured (5 K) and the two phases therefore coexist in this
temperature-composition regime. Phase A-II orders antiferromagnetically (AFM)
below a N\'{e}el temperature K, with the CE-type magnetic
structure. Resistivity measurements show that this phase is a conductor, while
the CE phase is insulating. Application of magnetic fields up to 9 T
progressively inhibits the formation of the A-II phase, but this suppression is
path dependent, being much stronger for example if the sample is field-cooled
compared to zero-field cooling and then applying the field. The H-T phase
diagram obtained from the diffraction measurements is in good agreement with
the results of magnetization and resistivity.Comment: 12 pages, 3 tables, 11 figure
Optical study of MgTiO: Evidence for an orbital-Peierls state
Dimension reduction due to the orbital ordering has recently been proposed to
explain the exotic charge, magnetic and structural transitions in some
three-dimensional (3D) transitional metal oxides. We present optical
measurement on a spinel compound MgTiO which undergoes a sharp
metal-insulator transition at 240 K, and show that the spectral change across
the transition can be well understood from the proposed picture of 1D Peierls
transition driven by the ordering of and orbitals. We further
elaborate that the orbital-driven instability picture applies also very well to
the optical data of another spinel CuIrS reported earlier.Comment: 5 pages, 6 figures, to be published in Phys. Rev.
Atomic-scale images of charge ordering in a mixed-valence manganite
Transition-metal perovskite oxides exhibit a wide range of extraordinary but
imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of
freedom all undergo order-disorder transitions in regimes not far from where
the best-known of these phenomena, namely high-temperature superconductivity of
the copper oxides, and the 'colossal' magnetoresistance of the manganese
oxides, occur. Mostly diffraction techniques, sensitive either to the spin or
the ionic core, have been used to measure the order. Unfortunately, because
they are only weakly sensitive to valence electrons and yield superposition of
signals from distinct mesoscopic phases, they cannot directly image mesoscopic
phase coexistence and charge ordering, two key features of the manganites. Here
we describe the first experiment to image charge ordering and phase separation
in real space with atomic-scale resolution in a transition metal oxide. Our
scanning tunneling microscopy (STM) data show that charge order is correlated
with structural order, as well as with whether the material is locally metallic
or insulating, thus giving an atomic-scale basis for descriptions of the
manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference
Nature of Electron Order in LaSrMnO
Synchrotron x-ray scattering measurements of the low-temperature structure of
the single-layer manganese oxide LaSrMnO, over the doping
range , indicate the existence of three distinct regions:
a disordered phase (), a charge-ordered phase (), and a
mixed phase (, the modulation vector associated
with the charge order is incommensurate with the lattice and depends linearly
on the concentration of electrons. The primary superlattice reflections
are strongly suppressed along the modulation direction and the higher harmonics
are weak, implying the existence of a largely transverse and nearly sinusoidal
structural distortion, consistent with a charge density wave of the
electrons.Comment: 4 pages, 4 figure
Cooling rate dependence of the antiferromagnetic domain structure of a single crystalline charge ordered manganite
The low temperature phase of single crystals of NdCaMnO
and GdCaMnO manganites is investigated by squid
magnetometry. NdCaMnO undergoes a charge-ordering
transition at =245K, and a long range CE-type antiferromagnetic state
is established at =145K. The dc-magnetization shows a cooling rate
dependence below , associated with a weak spontaneous moment. The
associated excess magnetization is related to uncompensated spins in the
CE-type antiferromagnetic structure, and to the presence in this state of
fully orbital ordered regions separated by orbital domain walls. The observed
cooling rate dependence is interpreted to be a consequence of the rearrangement
of the orbital domain state induced by the large structural changes occurring
upon cooling.Comment: REVTeX4; 7 pages, 4 figures. Revised 2001/12/0
Spin moment over 10-300 K and delocalization of magnetic electrons above the Verwey transition in magnetite
In order to probe the magnetic ground state, we have carried out temperature
dependent magnetic Compton scattering experiments on an oriented single crystal
of magnetite (FeO), together with the corresponding first-principles
band theory computations to gain insight into the measurements. An accurate
value of the magnetic moment associated with unpaired spins is obtained
directly over the temperature range of 10-300K. is found to be
non-integral and to display an anomalous behavior with the direction of the
external magnetic field near the Verwey transition. These results reveal how
the magnetic properties enter the Verwey energy scale via spin-orbit coupling
and the geometrical frustration of the spinel structure, even though the Curie
temperature of magnetite is in excess of 800 K. The anisotropy of the magnetic
Compton profiles increases through the Verwey temperature and indicates
that magnetic electrons in the ground state of magnetite become delocalized on
Fe B-sites above .Comment: 5 pages, 5 figures, to appear in Journal of Physics and Chemistry of
Solid
Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}
We report neutron scattering measurements of the structure and magnetism of
stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single
crystal sample demonstrate that the excess oxygen dopants form a
three-dimensional ordered superlattice within the interstitial regions of the
crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast
rate of cooling can freeze-in the disordered-oxygen state. Hence, by
controlling the cooling rate, the degree of dopant disorder in our
La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched
disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same
time, the quenched disorder enhances the spin density wave order in a manner
analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR
Trimer Formation and Metal-Insulator Transition in Orbital Degenerate Systems on a Triangular Lattice
As a prototypical self-organization in the system with orbital degeneracy, we
theoretically investigate trimer formation on a triangular lattice, as observed
in LiVO2. From the analysis of an effective spin-orbital coupled model in the
strong correlation limit, we show that the previously-proposed orbital-ordered
trimer state is not the lowest-energy state for a finite Hund's-rule coupling.
Instead, exploring the ground state in a wide range of parameters for a
multiorbital Hubbard model, we find an instability toward a different
orbital-ordered trimer state in the intermediately correlated regime in the
presence of trigonal crystal field. The trimer phase appears in the competing
region among a paramagnetic metal, band insulator, and Mott insulator. The
underlying mechanism is nesting instability of the Fermi surface by a
synergetic effect of Coulomb interactions and trigonal-field splitting. The
results are compared with experiments in triangularlattice compounds, LiVX2
(X=O, S, Se) and NaVO2.Comment: 4 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
Structural response to O*-O' and magnetic transitions in orthorhombic perovskites
We present a temperature dependent single crystal x-ray diffraction study of
twinned orthorhombic perovskites La1-xCaxMnO3, for x=0.16 and x=0.25. These
data show the evolution of the crystal structure from the ferromagnetic
insulating state to the ferromagnetic metallic state. The data are modelled in
space group Pnma with twin relations based on a distribution of the b axis over
three perpendicular cubic axes. The twin model allows full structure
determination in the presence of up to six twin fractions using the single
crystal x-ray diffraction data.Comment: 13 pages, including 13 figures and 2 table
- …
