50,117 research outputs found
Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores
Stars and more particularly massive stars, have a drastic impact on galaxy
evolution. Yet the conditions in which they form and collapse are still not
fully understood. In particular, the influence of the magnetic field on the
collapse of massive clumps is relatively unexplored, it is thus of great
relevance in the context of the formation of massive stars to investigate its
impact. We perform high resolution, MHD simulations of the collapse of hundred
solar masses, turbulent and magnetized clouds, using the adaptive mesh
refinement code RAMSES. We compute various quantities such as mass
distribution, magnetic field and angular momentum within the collapsing core
and study the episodic outflows and the fragmentation that occurs during the
collapse. The magnetic field has a drastic impact on the cloud evolution. We
find that magnetic braking is able to substantially reduce the angular momentum
in the inner part of the collapsing cloud. Fast and episodic outflows are being
launched with typical velocities of the order of 3-5 km s although the
highest velocities can be as high as 30-40 km s. The fragmentation in
several objects, is reduced in substantially magnetized clouds with respect to
hydrodynamical ones by a factor of the order of 1.5-2. We conclude that
magnetic fields have a significant impact on the evolution of massive clumps.
In combination with radiation, magnetic fields largely determine the outcome of
massive core collapse. We stress that numerical convergence of MHD collapse is
a challenging issue. In particular, numerical diffusion appears to be important
at high density therefore possibly leading to an over-estimation of the number
of fragments.Comment: accepted for publication in A&
Nuclear isotope thermometry
We discuss different aspects which could influence temperatures deduced from
experimental isotopic yields in the multifragmentation process. It is shown
that fluctuations due to the finite size of the system and distortions due to
the decay of hot primary fragments conspire to blur the temperature
determination in multifragmentation reactions. These facts suggest that caloric
curves obtained through isotope thermometers, which were taken as evidence for
a first-order phase transition in nuclear matter, should be investigated very
carefully.Comment: 9 pages, 7 figure
Carrier and polarization dynamics in monolayer MoS2
In monolayer MoS2 optical transitions across the direct bandgap are governed
by chiral selection rules, allowing optical valley initialization. In time
resolved photoluminescence (PL) experiments we find that both the polarization
and emission dynamics do not change from 4K to 300K within our time resolution.
We measure a high polarization and show that under pulsed excitation the
emission polarization significantly decreases with increasing laser power. We
find a fast exciton emission decay time on the order of 4ps. The absence of a
clear PL polarization decay within our time resolution suggests that the
initially injected polarization dominates the steady state PL polarization. The
observed decrease of the initial polarization with increasing pump photon
energy hints at a possible ultrafast intervalley relaxation beyond the
experimental ps time resolution. By compensating the temperature induced change
in bandgap energy with the excitation laser energy an emission polarization of
40% is recovered at 300K, close to the maximum emission polarization for this
sample at 4K.Comment: 7 pages, 7 figures including supplementary materia
The Formation of the First Stars II. Radiative Feedback Processes and Implications for the Initial Mass Function
We consider the radiative feedback processes that operate during the
formation of the first stars, including the photodissociation of H_2, Ly-alpha
radiation pressure, formation and expansion of an HII region, and disk
photoevaporation. These processes may inhibit continued accretion once the
stellar mass has reached a critical value, and we evaluate this mass separately
for each process. Photodissociation of H_2 in the local dark matter minihalo
occurs relatively early in the growth of the protostar, but we argue this does
not affect subsequent accretion since by this time the depth of the potential
is large enough for accretion to be mediated by atomic cooling. However,
neighboring starless minihalos can be affected. Ionization creates an HII
region in the infalling envelope above and below the accretion disk. Ly-alpha
radiation pressure acting at the boundary of the HII region is effective at
reversing infall from narrow polar directions when the star reaches ~20-30Msun,
but cannot prevent infall from other directions. Expansion of the HII region
beyond the gravitational escape radius for ionized gas occurs at masses
~50-100Msun, depending on the accretion rate and angular momentum of the
inflow. However, again, accretion from the equatorial regions can continue
since the neutral accretion disk has a finite thickness and shields a
substantial fraction of the accretion envelope from direct ionizing flux. At
higher stellar masses, ~140Msun in the fiducial case, the combination of
declining accretion rates and increasing photoevaporation-driven mass loss from
the disk act to effectively halt the increase in the protostellar mass. We
identify this process as the mechanism that terminates the growth of Population
III stars... (abridged)Comment: 31 pages, including 10 figures, accepted to Ap
- …
