50,117 research outputs found

    Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores

    Get PDF
    Stars and more particularly massive stars, have a drastic impact on galaxy evolution. Yet the conditions in which they form and collapse are still not fully understood. In particular, the influence of the magnetic field on the collapse of massive clumps is relatively unexplored, it is thus of great relevance in the context of the formation of massive stars to investigate its impact. We perform high resolution, MHD simulations of the collapse of hundred solar masses, turbulent and magnetized clouds, using the adaptive mesh refinement code RAMSES. We compute various quantities such as mass distribution, magnetic field and angular momentum within the collapsing core and study the episodic outflows and the fragmentation that occurs during the collapse. The magnetic field has a drastic impact on the cloud evolution. We find that magnetic braking is able to substantially reduce the angular momentum in the inner part of the collapsing cloud. Fast and episodic outflows are being launched with typical velocities of the order of 3-5 km s1^{-1} although the highest velocities can be as high as 30-40 km s1^{-1}. The fragmentation in several objects, is reduced in substantially magnetized clouds with respect to hydrodynamical ones by a factor of the order of 1.5-2. We conclude that magnetic fields have a significant impact on the evolution of massive clumps. In combination with radiation, magnetic fields largely determine the outcome of massive core collapse. We stress that numerical convergence of MHD collapse is a challenging issue. In particular, numerical diffusion appears to be important at high density therefore possibly leading to an over-estimation of the number of fragments.Comment: accepted for publication in A&

    Nuclear isotope thermometry

    Get PDF
    We discuss different aspects which could influence temperatures deduced from experimental isotopic yields in the multifragmentation process. It is shown that fluctuations due to the finite size of the system and distortions due to the decay of hot primary fragments conspire to blur the temperature determination in multifragmentation reactions. These facts suggest that caloric curves obtained through isotope thermometers, which were taken as evidence for a first-order phase transition in nuclear matter, should be investigated very carefully.Comment: 9 pages, 7 figure

    Carrier and polarization dynamics in monolayer MoS2

    Full text link
    In monolayer MoS2 optical transitions across the direct bandgap are governed by chiral selection rules, allowing optical valley initialization. In time resolved photoluminescence (PL) experiments we find that both the polarization and emission dynamics do not change from 4K to 300K within our time resolution. We measure a high polarization and show that under pulsed excitation the emission polarization significantly decreases with increasing laser power. We find a fast exciton emission decay time on the order of 4ps. The absence of a clear PL polarization decay within our time resolution suggests that the initially injected polarization dominates the steady state PL polarization. The observed decrease of the initial polarization with increasing pump photon energy hints at a possible ultrafast intervalley relaxation beyond the experimental ps time resolution. By compensating the temperature induced change in bandgap energy with the excitation laser energy an emission polarization of 40% is recovered at 300K, close to the maximum emission polarization for this sample at 4K.Comment: 7 pages, 7 figures including supplementary materia

    The Formation of the First Stars II. Radiative Feedback Processes and Implications for the Initial Mass Function

    Full text link
    We consider the radiative feedback processes that operate during the formation of the first stars, including the photodissociation of H_2, Ly-alpha radiation pressure, formation and expansion of an HII region, and disk photoevaporation. These processes may inhibit continued accretion once the stellar mass has reached a critical value, and we evaluate this mass separately for each process. Photodissociation of H_2 in the local dark matter minihalo occurs relatively early in the growth of the protostar, but we argue this does not affect subsequent accretion since by this time the depth of the potential is large enough for accretion to be mediated by atomic cooling. However, neighboring starless minihalos can be affected. Ionization creates an HII region in the infalling envelope above and below the accretion disk. Ly-alpha radiation pressure acting at the boundary of the HII region is effective at reversing infall from narrow polar directions when the star reaches ~20-30Msun, but cannot prevent infall from other directions. Expansion of the HII region beyond the gravitational escape radius for ionized gas occurs at masses ~50-100Msun, depending on the accretion rate and angular momentum of the inflow. However, again, accretion from the equatorial regions can continue since the neutral accretion disk has a finite thickness and shields a substantial fraction of the accretion envelope from direct ionizing flux. At higher stellar masses, ~140Msun in the fiducial case, the combination of declining accretion rates and increasing photoevaporation-driven mass loss from the disk act to effectively halt the increase in the protostellar mass. We identify this process as the mechanism that terminates the growth of Population III stars... (abridged)Comment: 31 pages, including 10 figures, accepted to Ap
    corecore