8,649 research outputs found

    Simple parametrization of neutrino mixing matrix

    Full text link
    We propose simple forms of neutrino mixing matrix in analogy with the Wolfenstein parametrization of quark mixing matrix, by adopting the smallest mixing angle θ13\theta_{13} as a measure of expansion parameters with the tribimaximal pattern as the base matrix. The triminimal parametrization technique is utilized to expand the mixing matrix under two schemes, i.e., the standard Chau-Keung (CK) scheme and the original Kobayashi-Maskawa (KM) scheme. The new parametrizations have their corresponding Wolfenstein-like parametrizations of quark mixing matrix, and therefore they share the same intriguing features of the Wolfenstein parametrization. The newly introduced expansion parameters for neutrinos are connected to the Wolfenstein parameters for quarks via the quark-lepton complementarity.Comment: 5 pages. Version for publication in PR

    Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole

    Get PDF
    Toroidal multipoles are a topic of increasing interest in the nanophotonics and metamaterials communities. In this paper, we separate out the toroidal multipole components of multipole expansions in polar coordinates (two- and three-dimensional) by expanding the Bessel or spherical Bessel functions. We discuss the formation of the lowest order of magnetic anapoles from the interaction between the magnetic toroidal dipole and the magnetic dipole. Our method also reveals that there are higher order current configurations other than the electric toroidal multipole that have the same radiation characteristics as the pure electric dipole. Furthermore, we find that the anapole condition requires that there is a perfect cancellation of all higher order current configurations

    Unified parametrization of quark and lepton mixing matrices in tri-bimaximal pattern

    Full text link
    Parametrization of the quark and lepton mixing matrices is the first attempt to understand the mixing of fermions. In this work, we parameterize the quark and lepton matrices with the help of quark-lepton complementarity (QLC) in a tri-bimaximal pattern of lepton mixing matrix. In this way, we combine the parametrization of the two matrices with each other. We apply this new parametrization to several physical quantities, and show its simplicity in the expression of, e.g., the Jarlskog parameter of CP violation.Comment: 12 latex page

    Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network

    Full text link
    We propose an heterogeneous multi-task learning framework for human pose estimation from monocular image with deep convolutional neural network. In particular, we simultaneously learn a pose-joint regressor and a sliding-window body-part detector in a deep network architecture. We show that including the body-part detection task helps to regularize the network, directing it to converge to a good solution. We report competitive and state-of-art results on several data sets. We also empirically show that the learned neurons in the middle layer of our network are tuned to localized body parts

    Bound State Solutions of Klein-Gordon Equation with the Kratzer Potential

    Full text link
    The relativistic problem of spinless particle subject to a Kratzer potential is analyzed. Bound state solutions for the s-wave are found by separating the Klein-Gordon equation in two parts, unlike the similar works in the literature, which provides one to see explicitly the relativistic contributions, if any, to the solution in the non-relativistic limit.Comment: 6 page

    Quark-lepton complementarity revisited

    Full text link
    We reexamine the quark-lepton complementarity (QLC) in nine angle-phase parametrizations with the latest result of a large lepton mixing angle Ï‘13\vartheta_{13} from the T2K, MINOS and Double Chooz experiments. We find that there are still two QLC relations satisfied in P1, P4 and P6 parametrizations, whereas only one QLC relation holds in P2, P3, P5 and P9 parametrizations separately. We also work out the corresponding reparametrization-invariant forms of the QLC relations and check the resulting expressions with the experimental data. The results can be viewed as a check of the validity of the QLC relations, as well as a new perspective into the issue of seeking for the connection between quarks and leptons.Comment: 5 Latex pages, 2 tables. Final version for publication in PR
    • …
    corecore