4,517 research outputs found

    Photon-meson transition form factors of light pseudoscalar mesons

    Full text link
    The photon-meson transition form factors of light pseudoscalar mesons π0\pi ^{0}, η\eta, and η\eta ^{\prime} are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low Q2Q^{2} and is also physically in accordance with the light-cone pQCD approach at large Q2Q^{2}. The calculated results agree with the available experimental data at high energy scale. We also predict the low Q2Q^{2} behaviors of the photon-meson transition form factors of π0\pi ^{0}, η\eta and η\eta ^{\prime }, which are measurable in e+A(Nucleus)e+A+Me+A({Nucleus})\to e+A+M process via Primakoff effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR

    Computation offloading and resource allocation for wireless powered mobile edge computing with latency constraint

    Get PDF
    In this letter, we consider a multi-user wireless powered mobile edge computing (MEC) system, in which a base station (BS) integrated with an MEC server transfers energy to wireless devices (WDs) as an incentive to encourage them to offload computing tasks to the MEC server. We formulate an optimization problem to contemporaneously maximize the data utility and minimize the energy consumption of the operator under the offloaded delay constraint, by jointly controlling wireless-power allocation at the BS as well as offloaded data size and power allocation at the WDs. To solve this problem, the offloaded delay constraint is first transformed into an offloaded data rate constraint. Then an iterative algorithm is designed to obtain the optimal offloaded data size and power allocation at the WDs by using Lagrangian dual method. The results are applied to derive the optimal wireless-power allocation at the BS. Finally, simulation results show that our algorithm outperforms existing schemes in terms of operator’s reward

    The Expression and Roles of Nde1 and Ndel1 in the Adult Mammalian Central Nervous System

    Get PDF
    Open Access funded by Wellcome Trust Under a Creative Commons license Acknowledgments We thank Prof Angelo Sementilli, Department of Pathology, Universidade Metropolitana de Santos, SP, Brazil, for the human sample collection. This study is funded by Scottish Universities Life Sciences Alliance (HR07019 to S. Shen and C.D. McCaig), Medical Research Scotland (384 FRG to B. Lang, United Kingdom), Tenovus Scotland (G12/25 to B. Lang), Sino-UK Higher Education Research Partnership for PhD Studies (C.D. McCaig and Y.Q. Ding) and Wellcome Trust (WT081633MA-NCE to P.J.A. McCaffery, United Kingdom).Peer reviewedPublisher PD

    Widely adaptable oil-in-water gel emulsions stabilized by an amphiphilic hydrogelator derived from dehydroabietic acid

    Get PDF
    A surfactant, R-6-AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low-molecular-weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm). R-6-AO not only stabilizes oil-in-water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm, but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo-TEM images reveal that R-6-AO molecules self-assemble into left-handed helical fibers with cross-sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R-6-AO can be prepared with different oils (n-dodecane, n-decane, n-octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers
    corecore