1,583 research outputs found

    Multi-speckle diffusing wave spectroscopy with a single mode detection scheme

    Get PDF
    We present a detection scheme for diffusing wave spectroscopy (DWS) based on a two cell geometry that allows efficient ensemble averaging. This is achieved by putting a fast rotating diffuser in the optical path between laser and sample. We show that the recorded (multi-speckle) correlation echoes provide an ensemble averaged signal that does not require additional time averaging. We find the performance of our experimental scheme comparable or even superior to camera based multi-speckle techniques that rely on direct spatial averaging. Furthermore, combined with traditional two-cell DWS, the full intensity autocorrelation function can be measured with a single experimental setup covering more than 10 decades in correlation time.Comment: Submitted to PR

    Fluid-fluid phase separation in hard spheres with a bimodal size distribution

    Full text link
    The effect of polydispersity on the phase behaviour of hard spheres is examined using a moment projection method. It is found that the Boublik-Mansoori-Carnahan-Starling-Leland equation of state shows a spinodal instability for a bimodal distribution if the large spheres are sufficiently polydisperse, and if there is sufficient disparity in mean size between the small and large spheres. The spinodal instability direction points to the appearance of a very dense phase of large spheres.Comment: 7 pages, 3 figures, moderately REVISED following referees' comments (original was 4 pages, 3 postscript figures

    Stacking Entropy of Hard Sphere Crystals

    Full text link
    Classical hard spheres crystallize at equilibrium at high enough density. Crystals made up of stackings of 2-dimensional hexagonal close-packed layers (e.g. fcc, hcp, etc.) differ in entropy by only about 103kB10^{-3}k_B per sphere (all configurations are degenerate in energy). To readily resolve and study these small entropy differences, we have implemented two different multicanonical Monte Carlo algorithms that allow direct equilibration between crystals with different stacking sequences. Recent work had demonstrated that the fcc stacking has higher entropy than the hcp stacking. We have studied other stackings to demonstrate that the fcc stacking does indeed have the highest entropy of ALL possible stackings. The entropic interactions we could detect involve three, four and (although with less statistical certainty) five consecutive layers of spheres. These interlayer entropic interactions fall off in strength with increasing distance, as expected; this fall-off appears to be much slower near the melting density than at the maximum (close-packing) density. At maximum density the entropy difference between fcc and hcp stackings is 0.00115+/0.00004kB0.00115 +/- 0.00004 k_B per sphere, which is roughly 30% higher than the same quantity measured near the melting transition.Comment: 15 page

    Detection and Estimation Theory

    Get PDF
    Contains reports on one research projects.Joint Services Electronics Program (Contract DAAB07-71-C-0300)National Science Foundation (Grant GX-36331

    Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence

    Full text link
    We report on calculations of the translational and rotational short-time self-diffusion coefficients DstD^t_s and DsrD^r_s for suspensions of charge-stabilized colloidal spheres. These diffusion coefficients are affected by electrostatic forces and many-body hydrodynamic interactions (HI). Our computations account for both two-body and three-body HI. For strongly charged particles, we predict interesting nonlinear scaling relations Dst1atϕ4/3D^t_s\propto 1-a_t\phi^{4/3} and Dsr1arϕ2D^r_s\propto 1-a_r\phi^2 depending on volume fraction ϕ\phi, with essentially charge-independent parameters ata_t and ara_r. These scaling relations are strikingly different from the corresponding results for hard spheres. Our numerical results can be explained using a model of effective hard spheres. Moreover, we perceptibly improve the known result for DstD^t_s of hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps

    The short-time self-diffusion coefficient of a sphere in a suspension of rigid rods

    Full text link
    The short--time self diffusion coefficient of a sphere in a suspension of rigid rods is calculated in first order in the rod volume fraction. For low rod concentrations the correction to the Einstein diffusion constant of the sphere is a linear function of the rod volume fraction with the slope proportional to the equilibrium averaged mobility diminution trace of the sphere interacting with a single freely translating and rotating rod. The two--body hydrodynamic interactions are calculated using the so--called bead model in which the rod is replaced by a stiff linear chain of touching spheres. The interactions between spheres are calculated numerically using the multipole method. Also an analytical expression for the diffusion coefficient as a function of the rod aspect ratio is derived in the limit of very long rods. We show that in this limit the correction to the Einstein diffusion constant does not depend on the size of the tracer sphere. The higher order corrections depending on the applied model are computed numerically. An approximate expression is provided, valid for a wide range of aspect ratios.Comment: 11 pages, 6 figure

    Glasses in hard spheres with short-range attraction

    Full text link
    We report a detailed experimental study of the structure and dynamics of glassy states in hard spheres with short-range attraction. The system is a suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear polymer which induces a depletion attraction between the particles. Observation of crystallization reveals a re-entrant glass transition. Static light scattering shows a continuous change in the static structure factors upon increasing attraction. Dynamic light scattering results, which cover 11 orders of magnitude in time, are consistent with the existence of two distinct kinds of glasses, those dominated by inter-particle repulsion and caging, and those dominated by attraction. Samples close to the `A3 point' predicted by mode coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure

    Non--Newtonian viscosity of interacting Brownian particles: comparison of theory and data

    Full text link
    A recent first-principles approach to the non-linear rheology of dense colloidal suspensions is evaluated and compared to simulation results of sheared systems close to their glass transitions. The predicted scenario of a universal transition of the structural dynamics between yielding of glasses and non-Newtonian (shear-thinning) fluid flow appears well obeyed, and calculations within simplified models rationalize the data over variations in shear rate and viscosity of up to 3 decades.Comment: 6 pages, 2 figures; J. Phys. Condens. Matter to be published (Jan. 2003

    Critical behaviors of sheared frictionless granular materials near jamming transition

    Full text link
    Critical behaviors of sheared dense and frictionless granular materials in the vicinity of the jamming transition are numerically investigated. From the extensive molecular dynamics simulation, we verify the validity of the scaling theory near the jamming transition proposed by Otsuki and Hayakawa (Prog. Theor. Phys., 121, 647 (2009)). We also clarify the critical behaviors of the shear viscosity and the pair correlation function based on both a phenomenology and the simulation.Comment: 13pages, 26 figure
    corecore