1,583 research outputs found
Multi-speckle diffusing wave spectroscopy with a single mode detection scheme
We present a detection scheme for diffusing wave spectroscopy (DWS) based on
a two cell geometry that allows efficient ensemble averaging. This is achieved
by putting a fast rotating diffuser in the optical path between laser and
sample. We show that the recorded (multi-speckle) correlation echoes provide an
ensemble averaged signal that does not require additional time averaging. We
find the performance of our experimental scheme comparable or even superior to
camera based multi-speckle techniques that rely on direct spatial averaging.
Furthermore, combined with traditional two-cell DWS, the full intensity
autocorrelation function can be measured with a single experimental setup
covering more than 10 decades in correlation time.Comment: Submitted to PR
Fluid-fluid phase separation in hard spheres with a bimodal size distribution
The effect of polydispersity on the phase behaviour of hard spheres is
examined using a moment projection method. It is found that the
Boublik-Mansoori-Carnahan-Starling-Leland equation of state shows a spinodal
instability for a bimodal distribution if the large spheres are sufficiently
polydisperse, and if there is sufficient disparity in mean size between the
small and large spheres. The spinodal instability direction points to the
appearance of a very dense phase of large spheres.Comment: 7 pages, 3 figures, moderately REVISED following referees' comments
(original was 4 pages, 3 postscript figures
Stacking Entropy of Hard Sphere Crystals
Classical hard spheres crystallize at equilibrium at high enough density.
Crystals made up of stackings of 2-dimensional hexagonal close-packed layers
(e.g. fcc, hcp, etc.) differ in entropy by only about per sphere
(all configurations are degenerate in energy). To readily resolve and study
these small entropy differences, we have implemented two different
multicanonical Monte Carlo algorithms that allow direct equilibration between
crystals with different stacking sequences. Recent work had demonstrated that
the fcc stacking has higher entropy than the hcp stacking. We have studied
other stackings to demonstrate that the fcc stacking does indeed have the
highest entropy of ALL possible stackings. The entropic interactions we could
detect involve three, four and (although with less statistical certainty) five
consecutive layers of spheres. These interlayer entropic interactions fall off
in strength with increasing distance, as expected; this fall-off appears to be
much slower near the melting density than at the maximum (close-packing)
density. At maximum density the entropy difference between fcc and hcp
stackings is per sphere, which is roughly 30% higher
than the same quantity measured near the melting transition.Comment: 15 page
Detection and Estimation Theory
Contains reports on one research projects.Joint Services Electronics Program (Contract DAAB07-71-C-0300)National Science Foundation (Grant GX-36331
Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence
We report on calculations of the translational and rotational short-time
self-diffusion coefficients and for suspensions of
charge-stabilized colloidal spheres. These diffusion coefficients are affected
by electrostatic forces and many-body hydrodynamic interactions (HI). Our
computations account for both two-body and three-body HI. For strongly charged
particles, we predict interesting nonlinear scaling relations and depending on volume fraction
, with essentially charge-independent parameters and . These
scaling relations are strikingly different from the corresponding results for
hard spheres. Our numerical results can be explained using a model of effective
hard spheres. Moreover, we perceptibly improve the known result for of
hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps
The short-time self-diffusion coefficient of a sphere in a suspension of rigid rods
The short--time self diffusion coefficient of a sphere in a suspension of
rigid rods is calculated in first order in the rod volume fraction. For low rod
concentrations the correction to the Einstein diffusion constant of the sphere
is a linear function of the rod volume fraction with the slope proportional to
the equilibrium averaged mobility diminution trace of the sphere interacting
with a single freely translating and rotating rod. The two--body hydrodynamic
interactions are calculated using the so--called bead model in which the rod is
replaced by a stiff linear chain of touching spheres. The interactions between
spheres are calculated numerically using the multipole method. Also an
analytical expression for the diffusion coefficient as a function of the rod
aspect ratio is derived in the limit of very long rods. We show that in this
limit the correction to the Einstein diffusion constant does not depend on the
size of the tracer sphere. The higher order corrections depending on the
applied model are computed numerically. An approximate expression is provided,
valid for a wide range of aspect ratios.Comment: 11 pages, 6 figure
Glasses in hard spheres with short-range attraction
We report a detailed experimental study of the structure and dynamics of
glassy states in hard spheres with short-range attraction. The system is a
suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear
polymer which induces a depletion attraction between the particles. Observation
of crystallization reveals a re-entrant glass transition. Static light
scattering shows a continuous change in the static structure factors upon
increasing attraction. Dynamic light scattering results, which cover 11 orders
of magnitude in time, are consistent with the existence of two distinct kinds
of glasses, those dominated by inter-particle repulsion and caging, and those
dominated by attraction. Samples close to the `A3 point' predicted by mode
coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure
Non--Newtonian viscosity of interacting Brownian particles: comparison of theory and data
A recent first-principles approach to the non-linear rheology of dense
colloidal suspensions is evaluated and compared to simulation results of
sheared systems close to their glass transitions. The predicted scenario of a
universal transition of the structural dynamics between yielding of glasses and
non-Newtonian (shear-thinning) fluid flow appears well obeyed, and calculations
within simplified models rationalize the data over variations in shear rate and
viscosity of up to 3 decades.Comment: 6 pages, 2 figures; J. Phys. Condens. Matter to be published (Jan.
2003
Critical behaviors of sheared frictionless granular materials near jamming transition
Critical behaviors of sheared dense and frictionless granular materials in
the vicinity of the jamming transition are numerically investigated. From the
extensive molecular dynamics simulation, we verify the validity of the scaling
theory near the jamming transition proposed by Otsuki and Hayakawa (Prog.
Theor. Phys., 121, 647 (2009)). We also clarify the critical behaviors of the
shear viscosity and the pair correlation function based on both a phenomenology
and the simulation.Comment: 13pages, 26 figure
- …
