14 research outputs found
Hydroelastic effects in the aorta bifurcation zone
The mechanical behavior of the vessels and blood is mathematically analyzed at the point of aortic bifurcation using a homogeneous single layer channel as a model of the aorta. Allowance is made for the fact that the aortic intima is considerably less rigid than the other layers. For analysis of blood flow in the major arteries, the blood is treated as a viscous Newtonian fluid whose movements are described by Navier-Stokes equations and a continuity equation. Blood flow dynamics at the aortic bifurcation are discussed on the basis of the results
Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex
Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries
The established method of polarized microscopy in combination with a universal stage is used to determine the layer-specific distributed collagen fibre orientations in 11 human non-atherosclerotic thoracic and abdominal aortas and common iliac arteries (63 ± 15.3 years, mean ± s.d.). A dispersion model is used to quantify over 37 000 recorded fibre angles from tissue samples. The study resulted in distinct fibre families, fibre directions, dispersion and thickness data for each layer and all vessels investigated. Two fibre families were present for the intima, media and adventitia in the aortas, with often a third and sometimes a fourth family in the intima in the respective axial and circumferential directions. In all aortas, the two families were almost symmetrically arranged with respect to the cylinder axis, closer to the axial direction in the adventitia, closer to the circumferential direction in the media and in between in the intima. The same trend was found for the intima and adventitia of the common iliac arteries; however, there was only one preferred fibre alignment present in the media. In all locations and layers, the observed fibre orientations were always in the tangential plane of the walls, with no radial components and very small dispersion through the wall thickness. A wider range of in-plane fibre orientations was present in the intima than in the media and adventitia. The mean total wall thickness for the aortas and the common iliac artery was 1.39 and 1.05 mm, respectively. For the aortas, a slight thickening of the intima and a thinning of the media in increasingly distal regions were observed. A clear intimal thickening was present distal to the branching of the celiac arteries. All data, except for the media of the common iliac arteries, showed two prominent collagen fibre families for all layers so that two-fibre family models seem most appropriate
