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HYDROBLASTIC EVORCTS IN WE AORTA BIVURCATTON ZONE

A. S. Vol ► mir, M. S. Clorsliteyn and B. A. Purinya
Air Force Engineering Academy, rioscow;

Latvian SS  Academy of Sciences
InSUL"to of Mcch"'Illics of 1101yiucril ► Riga

Accordinr, to data from autopsies and cardiovascular surgery,	 ^Jcllj*

the process or sclerotic plaque formation and embrittlement 
in 

persons

of all ageo ► but chiefly in the elderly, frequently occurs where the
major vessels ramify, ,s.opecially at the aortic bifurcation. Serious

diseases resulting in inadequate blood supply to the logs are asso-
ciatud with these processes.

Analysis of the hydroolastic aspects of such phenomena would

lead to a betters
	 of 

their or:6gino. 
One 

obvious cause

or atherosclerotic plaques, most often encountered at the edges of

the bifurcation, Is the formation of closed eddies where other major

vessels branch off from the aorta. Combined solution of hydrodynx"I'%fte

and elasticity equations is required for analysis of the mechanical,
behavior of blood and vessels at the bifurcation. Our work [I] has
shown that, 

in 
general, a Wood vessel 

s
hould be treated as a multl-

layered envelope, one layer of which -- the muscular -- through actAve,

contraction exerts a. substantial Influence upon the 'nitial (for each

g	 n,iven hei odynamic problem) condition of -the vessel-envelope.

Structurally, the aorta Is an elastic-type vessel. The inner
coat of the aorta (the intima) Is distinguished by Its complex

structure and	 i e,, in comparison with the intima of smaller--calibe rr

vessels, its relative thickness. The middle coat of the aorta is
made up of dozens or alternating layers of elastic and smooth muscle
tissue, and its external coat is comparatively poorly developed.
Bearinr, ic y 	that the intima is considerably loss rigid than the

other coats, while the middle coat, because of its large number of
layers, is essentially homogeneous, we can 

use 
a single-layer envelope

as a model of the aorta. Similarly [21 ], we shall write the equation

*Numbers in the margin indient p pagination in the foreign text.
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where .x, y, and z are -he coordin
envelope. Displacements in the x,

designated as u, v, and w, median

the bending and torque woments as

ness of the envelope material are

surface curvatures.

3.tes for the median surface of the /165

y, and N directions are correspondingly

surface stress as Nx , Ny , and T. and

blx , Aly , and N. The density and thick-

p and h k  and k  are the median

Now let 1 ;i deal with the blood flow equations. A number of models

are known to c'escribe blood rheology in the cardiovascular system [3].

When analyzing blood flow in the major vessels, we may consider the

blood a viscous Newtonian fluid whose movement is described by the

Navier-Stokes equations
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and the continuity equation

!'r-1_ - (- I.- . i(pr^a) 
-F 

(nr__+ .L?Jr) zoo.	 (5)
at	 at	 r	 dQ	 ox	 Or

where x, r, and 0 are fluid parttele coordinates; v x , vr , and v 5 are

its velocity proj ections; v = is/ p f is the kinematic-viscosity ooeffic--
ient pf is the fluid density. The equationn of state p M p(pf) should

be added to these equations,

Boundary conditions for the fluid at the deformed walls of the
vessel are:

	

ur' as	 (5)^'" vt	
vas 

The forces exerted by the flowing; blood on the walls of the aorta

are determined using the relationships

Pl	 ^

	

Or	 0,Vdvi ^ ^t-E^-^2^'Pa fir` 	(7)

As can be seen in equations (1) - (3), we shall, disregard the force p

The stationary blood flow through the bifurcation during; diastole

may be taken as the original state of the system. Combined integration

of the system of equations for the envelope (1) - (3) and the hydro-

dynamic equations (4) and (5) under the corresponding envelope and

fluid resistance conditions (6) and (7) should be performed, giving

the changes in pressure at the entrance to the area of the aorta under

consideration at the bifurcation and the blood flow durinP, systole.

These "entry" functions may be provided as based upon measurement data

which are available in the Literature.

The difficulties associated with integrating these equations

for a non-symmetrical area and in the event of a non-stationary process

are obvious. They can only be surmounted by using; numerical methods L16F

and a :Large digital computer.
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Figure I

As a first approximation, we can
conslaer the problem of fluid flow In a
similarly shaped smooth channel, which
will provide a tentative description of
blood flow through the bifurcation. This
problem is considered [51 with the assumption
that the channel walls are rigid, Navier•
-Stokes equations for an incompressible
fluid are transformed into the eddy
transfer equation [61:

0t dy ox —
,C)x	 VV21h f'a'll`

where ^ is the flow function associated with the fluid velocity ratios

V 'V rZ oil 	 tl it	 oil,

When velocity changes are uneven, a closed eddy gradually forms at the
external angle of the bifurcation near the entrance to the large
channel, but it substantially affects the primary flow zone as well
(fig. 1). The most intense fluid particle rotation is found at the
outside of the streamline, going away from the separation point.

As the current develops in
gradually diverges from it, whi
In fig. 1 by 0) shifts upward s
area forms at the center of the

in this case are the high shift
eddy forms.

time, the streamline nearest the wall
e the separation point (designated
mewhat along the flow. A low pressure
closed eddy. Of extreme importance
stresses in the area where the closed

The sclerotic phenomena mentioned above are obviously associated
with this condition.

We should note that similar processes are observed in the ducts
of large hydraulic systems, and they consist of salt deposition on the
walls where the duct systems branch.
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