1,955 research outputs found

    Discovering Evolutionary Stepping Stones through Behavior Domination

    Full text link
    Behavior domination is proposed as a tool for understanding and harnessing the power of evolutionary systems to discover and exploit useful stepping stones. Novelty search has shown promise in overcoming deception by collecting diverse stepping stones, and several algorithms have been proposed that combine novelty with a more traditional fitness measure to refocus search and help novelty search scale to more complex domains. However, combinations of novelty and fitness do not necessarily preserve the stepping stone discovery that novelty search affords. In several existing methods, competition between solutions can lead to an unintended loss of diversity. Behavior domination defines a class of algorithms that avoid this problem, while inheriting theoretical guarantees from multiobjective optimization. Several existing algorithms are shown to be in this class, and a new algorithm is introduced based on fast non-dominated sorting. Experimental results show that this algorithm outperforms existing approaches in domains that contain useful stepping stones, and its advantage is sustained with scale. The conclusion is that behavior domination can help illuminate the complex dynamics of behavior-driven search, and can thus lead to the design of more scalable and robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017

    Optimization of the leak conductance in the squid giant axon

    Full text link
    We report on a theoretical study showing that the leak conductance density, \GL, in the squid giant axon appears to be optimal for the action potential firing frequency. More precisely, the standard assumption that the leak current is composed of chloride ions leads to the result that the experimental value for \GL is very close to the optimal value in the Hodgkin-Huxley model which minimizes the absolute refractory period of the action potential, thereby maximizing the maximum firing frequency under stimulation by sharp, brief input current spikes to one end of the axon. The measured value of \GL also appears to be close to optimal for the frequency of repetitive firing caused by a constant current input to one end of the axon, especially when temperature variations are taken into account. If, by contrast, the leak current is assumed to be composed of separate voltage-independent sodium and potassium currents, then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review

    In Vivo Quantitation of Adipose Tissue by Differential Absorptiometry Using Penetrating Isotopic Radiation

    Get PDF
    The physical principles for determining tissue lipid content In vivo by selective radiation attenuation have been studied and are compared to other methods of body composition analysis. Two penetrating photon beams, each monoenergetic but of differing energies, are simultaneously passed through the low Z components of tissue and the relative beam absorption measured. A mathematical function incorporating the unabsorbed and absorbed photon beam intensities is applied to determine experimentally the relative proportion of fat and lean in the tissue. \u27 Cd is used as the radioactive source of both xrays and gamma radiation. Results of experiments on low 2 phantom material and in vitro animal tissue indicate that the dual photon absorption principle provides accurate two-component quantitation. The fractional lipid content of in vitro mammalian tissue samples has been determined by dual beam photon absorption, with an error of less than 2%. In vivo values are reproducible to better than 2%. Skinfold thickness was measured simultaneously in vivo with adipose tissue content by dual beam absorptiometry. The experimental coefficient of correlation between these two measurements was .98

    The spectral weight of the Hubbard model through cluster perturbation theory

    Full text link
    We calculate the spectral weight of the one- and two-dimensional Hubbard models, by performing exact diagonalizations of finite clusters and treating inter-cluster hopping with perturbation theory. Even with relatively modest clusters (e.g. 12 sites), the spectra thus obtained give an accurate description of the exact results. Thus, spin-charge separation (i.e. an extended spectral weight bounded by singularities) is clearly recognized in the one-dimensional Hubbard model, and so is extended spectral weight in the two-dimensional Hubbard model.Comment: 4 pages, 5 figure

    Statistical Methods for Convergence Detection of Multi-Objective Evolutionary Algorithms

    Get PDF
    In this paper, two approaches for estimating the generation in which a multi-objective evolutionary algorithm (MOEA) shows statistically significant signs of convergence are introduced. A set-based perspective is taken where convergence is measured by performance indicators. The proposed techniques fulfill the requirements of proper statistical assessment on the one hand and efficient optimisation for real-world problems on the other hand. The first approach accounts for the stochastic nature of the MOEA by repeating the optimisation runs for increasing generation numbers and analysing the performance indicators using statistical tools. This technique results in a very robust offline procedure. Moreover, an online convergence detection method is introduced as well. This method automatically stops the MOEA when either the variance of the performance indicators falls below a specified threshold or a stagnation of their overall trend is detected. Both methods are analysed and compared for two MOEA and on different classes of benchmark functions. It is shown that the methods successfully operate on all stated problems needing less function evaluations while preserving good approximation duality at the same time.Article / Letter to editorLeiden Inst. Advanced Computer Science

    From solid solution to cluster formation of Fe and Cr in α\alpha-Zr

    Full text link
    To understand the mechanisms by which Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, a combination of experimental (atom probe tomography, x-ray diffraction and thermoelectric power measurements) and modelling (density functional theory) techniques are employed to investigate the non-equilibrium solubility and clustering of Fe and Cr in binary Zr alloys. Cr occupies both interstitial and substitutional sites in the {\alpha}-Zr lattice, Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of alloying concentration (in the dilute regime) is strongly anisotropic for Fe additions, expanding the cc-axis while contracting the aa-axis. Defect clusters are observed at higher solution concentrations, which induce a smaller amount of lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased solubility of defect clusters, the implications for irradiation induced microstructure changes in Zr alloys are discussed.Comment: 15 pages including figure, 9 figures, 2 tables. Submitted for publication in Acta Mater, Journal of Nuclear Materials (2015

    The C(-1019)G 5-HT1A promoter polymorphism and personality traits: no evidence for significant association in alcoholic patients

    Get PDF
    The 5HT1A receptor is one of at least 14 different receptors for serotonin which has a role in moderating several brain functions and may be involved in the aetiology of several psychiatric disorders. The C(-1019)G 5-HT1A promoter polymorphism was reported to be associated with major depression, depression-related personality traits and suicidal behavior in various samples. The G(-1019) allele carriers are prone to depressive personality traits and suicidal behavior, because serotonergic neurotransmission is reduced. The aim of this study is to replicate previous findings in a sample of 185 Alcohol-dependent individuals. Personality traits were evaluated using the NEO FFI and TCI. History of suicidal behavior was assessed by a standardized semistructured interview (SSAGA). No significant differences across C(-1019)G 5-HT1A genotype groups were found for TCI temperament and character traits and for NEO FFI personality scales. No association was detected between this genetic variant and history of suicide attempts. These results neither support a role of C(-1019)G 5-HT1A promoter polymorphism in the disposition of personality traits like harm avoidance or neuroticism, nor confirm previous research reporting an involvement of the G allele in suicidal behavior in alcoholics. Significant associations, however, were detected between Babor's Type B with number of suicide attempts in history, high neuroticism and harm avoidance scores in alcoholics

    From local to nonlocal Fermi liquid in doped antiferromagnets

    Full text link
    The variation of single-particle spectral functions with doping is studied numerically within the t-J model. It is shown that corresponding self energies change from local ones at the intermediate doping to strongly nonlocal ones for a weakly doped antiferromagnet. The nonlocality shows up most clearly in the pseudogap emerging in the density of states, due to the onset of short-range antiferromagnetic correlations.Comment: 4 pages, 3 Postscript figures, revtex, submitted to Phys.Rev.Let
    corecore