2,386 research outputs found
Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: recombination rates, rearrangements and centromere location
Optimization of the leak conductance in the squid giant axon
We report on a theoretical study showing that the leak conductance density,
\GL, in the squid giant axon appears to be optimal for the action potential
firing frequency. More precisely, the standard assumption that the leak current
is composed of chloride ions leads to the result that the experimental value
for \GL is very close to the optimal value in the Hodgkin-Huxley model which
minimizes the absolute refractory period of the action potential, thereby
maximizing the maximum firing frequency under stimulation by sharp, brief input
current spikes to one end of the axon. The measured value of \GL also appears
to be close to optimal for the frequency of repetitive firing caused by a
constant current input to one end of the axon, especially when temperature
variations are taken into account. If, by contrast, the leak current is assumed
to be composed of separate voltage-independent sodium and potassium currents,
then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review
The spectral weight of the Hubbard model through cluster perturbation theory
We calculate the spectral weight of the one- and two-dimensional Hubbard
models, by performing exact diagonalizations of finite clusters and treating
inter-cluster hopping with perturbation theory. Even with relatively modest
clusters (e.g. 12 sites), the spectra thus obtained give an accurate
description of the exact results. Thus, spin-charge separation (i.e. an
extended spectral weight bounded by singularities) is clearly recognized in the
one-dimensional Hubbard model, and so is extended spectral weight in the
two-dimensional Hubbard model.Comment: 4 pages, 5 figure
Discovering Evolutionary Stepping Stones through Behavior Domination
Behavior domination is proposed as a tool for understanding and harnessing
the power of evolutionary systems to discover and exploit useful stepping
stones. Novelty search has shown promise in overcoming deception by collecting
diverse stepping stones, and several algorithms have been proposed that combine
novelty with a more traditional fitness measure to refocus search and help
novelty search scale to more complex domains. However, combinations of novelty
and fitness do not necessarily preserve the stepping stone discovery that
novelty search affords. In several existing methods, competition between
solutions can lead to an unintended loss of diversity. Behavior domination
defines a class of algorithms that avoid this problem, while inheriting
theoretical guarantees from multiobjective optimization. Several existing
algorithms are shown to be in this class, and a new algorithm is introduced
based on fast non-dominated sorting. Experimental results show that this
algorithm outperforms existing approaches in domains that contain useful
stepping stones, and its advantage is sustained with scale. The conclusion is
that behavior domination can help illuminate the complex dynamics of
behavior-driven search, and can thus lead to the design of more scalable and
robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2017
Creating an enduring developmental legacy from FIFA 2010: The Football Foundation of South Africa (FFSA)
Consistent Application of Maximum Entropy to Quantum-Monte-Carlo Data
Bayesian statistics in the frame of the maximum entropy concept has widely
been used for inferential problems, particularly, to infer dynamic properties
of strongly correlated fermion systems from Quantum-Monte-Carlo (QMC) imaginary
time data. In current applications, however, a consistent treatment of the
error-covariance of the QMC data is missing. Here we present a closed Bayesian
approach to account consistently for the QMC-data.Comment: 13 pages, RevTeX, 2 uuencoded PostScript figure
Strong-Coupling Expansion for the Hubbard Model
A strong-coupling expansion for models of correlated electrons in any
dimension is presented. The method is applied to the Hubbard model in
dimensions and compared with numerical results in . Third order expansion
of the Green function suffices to exhibit both the Mott metal-insulator
transition and a low-temperature regime where antiferromagnetic correlations
are strong. It is predicted that some of the weak photoemission signals
observed in one-dimensional systems such as should become stronger as
temperature increases away from the spin-charge separated state.Comment: 4 pages, RevTex, 3 epsf figures include
Relative Reactivity of the Metal-Amido versus Metal-Imido Bond in Linked Cp-Amido and Half-Sandwich Complexes of Vanadium
Treatment of (η5-C5H4C2H4NR)V(N-t-Bu)Me (R = Me, i-Pr) and CpV(N-p-Tol)(N-i-Pr2)Me (Cp = η5-C5H5) with B(C6F5)3 or [Ph3C][B(C6F5)4] results in formation of the corresponding cations, [(η5-C5H4C2H4NR)V(N-t-Bu)]+ and [CpV(N-p-Tol)(N-i-Pr2)]+. The latter could also be generated as its N,N-dimethylaniline adduct by treatment of the methyl complex with [PhNMe2H][BAr4] (Ar = Ph, C6F5). Instead, the analogous reaction with the linked Cp-amido precursor results in protonation of the imido-nitrogen atom. Sequential cyclometalation of the amide substituents gave cationic imine complexes [(η5-C5H4C2H4NCR'2)V(NH-t-Bu)]+ (R' = H, Me) and methane. Reaction of cationic [(η5-C5H4C2H4NR)V(N-t-Bu)]+ with olefins affords the corresponding olefin adducts, whereas treatment with 1 or 2 equiv of 2-butyne results in insertion of the alkyne into the vanadium-nitrogen single bond, affording the mono- and bis-insertion products [(η5-C5H4C2H4N(i-Pr)C2Me2)V(N-t-Bu)]+ and [(η5-C5H4C2H4N(i-Pr)C4Me4)V(N-t-Bu)]+. The same reaction with the half-sandwich compound [CpV(N-p-Tol)(N-i-Pr2)]+ results in a paramagnetic compound that, upon alcoholysis, affords sec-butylidene-p-tolylamine, suggesting an initial [2+2] cycloaddition reaction. The difference in reactivity between the V-N bond versus the V=N bond was further studied using computational methods. Results were compared to the isoelectronic titanium system CpTi(NH)(NH2). These studies indicate that the kinetic product in each system is derived from a [2+2] cycloaddition reaction. For titanium, this was found as the thermodynamic product as well, whereas the insertion reaction was found to be thermodynamically more favorable in the case of vanadium.
From local to nonlocal Fermi liquid in doped antiferromagnets
The variation of single-particle spectral functions with doping is studied
numerically within the t-J model. It is shown that corresponding self energies
change from local ones at the intermediate doping to strongly nonlocal ones for
a weakly doped antiferromagnet. The nonlocality shows up most clearly in the
pseudogap emerging in the density of states, due to the onset of short-range
antiferromagnetic correlations.Comment: 4 pages, 3 Postscript figures, revtex, submitted to Phys.Rev.Let
- …
