121 research outputs found

    Natural Genetic Variation of Xanthomonas campestris pv. campestris Pathogenicity on Arabidopsis Revealed by Association and Reverse Genetics

    Get PDF
    The pathogenic bacterium Xanthomonas campestris pv. campestris, the causal agent of black rot of Brassicaceae, manipulates the physiology and the innate immunity of its hosts. Association genetic and reverse-genetic analyses of a world panel of 45 X. campestris pv. campestris strains were used to gain understanding of the genetic basis of the bacterium’s pathogenicity to Arabidopsis thaliana. We found that the compositions of the minimal predicted type III secretome varied extensively, with 18 to 28 proteins per strain. There were clear differences in aggressiveness of those X. campestris pv. campestris strains on two Arabidopsis natural accessions. We identified 3 effector genes (xopAC, xopJ5, and xopAL2) and 67 amplified fragment length polymorphism (AFLP) markers that were associated with variations in disease symptoms. The nature and distribution of the AFLP markers remain to be determined, but we observed a low linkage disequilibrium level between predicted effectors and other significant markers, suggesting that additional genetic factors make a meaningful contribution to pathogenicity. Mutagenesis of type III effectors in X. campestris pv. campestris confirmed that xopAC functions as both a virulence and an avirulence gene in Arabidopsis and that xopAM functions as a second avirulence gene on plants of the Col-0 ecotype. However, we did not detect the effect of any other effector in the X. campestris pv. campestris 8004 strain, likely due to other genetic background effects. These results highlight the complex genetic basis of pathogenicity at the pathovar level and encourage us to challenge the agronomical relevance of some virulence determinants identified solely in model strains.IMPORTANCE The identification and understanding of the genetic determinants of bacterial virulence are essential to be able to design efficient protection strategies for infected plants. The recent availability of genomic resources for a limited number of pathogen isolates and host genotypes has strongly biased our research toward genotype-specific approaches. Indeed, these do not consider the natural variation in both pathogens and hosts, so their applied relevance should be challenged. In our study, we exploited the genetic diversity of Xanthomonas campestris pv. campestris, the causal agent of black rot on Brassicaceae (e.g., cabbage), to mine for pathogenicity determinants. This work evidenced the contribution of known and unknown loci to pathogenicity relevant at the pathovar level and identified these virulence determinants as prime targets for breeding resistance to X. campestris pv. campestris in Brassicaceae

    Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers.</p> <p>Methods</p> <p>Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months.</p> <p>Results</p> <p>In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months.</p> <p>Conclusions</p> <p>We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.</p

    Masking Proofs are Tight (and How to Exploit it in Security Evaluations)

    Get PDF
    Evaluating the security level of a leaking implementation against side-channel attacks is a challenging task. This is especially true when countermeasures such as masking are implemented since in this case: (i) the amount of measurements to perform a key recovery may become prohibitive for certification laboratories, and (ii) applying optimal (multivariate) attacks may be computationally intensive and technically challenging. In this paper, we show that by taking advantage of the tightness of masking security proofs, we can significantly simplify this evaluation task in a very general manner. More precisely, we show that the evaluation of a masked implementation can essentially be reduced to the one of an unprotected implementation. In addition, we show that despite optimal attacks against masking schemes are computationally intensive for large number of shares, heuristic (soft analytical side-channel) attacks can approach optimality very efficiently. As part of this second contribution, we also improve over the recent multivariate (aka horizontal) side-channel attacks proposed at CHES 2016 by Battistello et al

    Humoral immunity in the spontaneously diabetic BB rat

    No full text
    Litters of BB rats with an expected high and low incidence of insulin-dependent diabetes were followed from weaning until the age of about 140 days. Islet cell surface antibodies (ICSA) and lymphocyte antibodies (LA) were determined in a radioligand assay with fixed rat insulinoma (RIN 5F) cells, an insulin-secreting cell line, or spleen lymphocytes. In the low-incidence litter, 2 out of 14 rats had ICSA and LA; one showed insulitis at the end of the study. In the high-incidence litter, 3 out of 7 developed diabetes; all 3 showed ICSA at weaning. The remaining 4 showed insulitis. All 7 diabetes-susceptible rats had ICSA and LA at some time during the study. It is concluded that there is a high incidence of circulating ICSA and LA in the spontaneously diabetic BB rat. The antibodies can often be detected before the onset of diabetes, and may be implicated in the beta-cell destructive process and in the lymphocytopenia characteristic of the syndrome
    corecore