30 research outputs found

    Identification of Sclerostin as a Putative New Myokine Involved in the Muscle-to-Bone Crosstalk

    Get PDF
    Bone and muscle have been recognized as endocrine organs since they produce and secrete “hormone-like factors” that can mutually influence each other and other tissues, giving rise to a “bone–muscle crosstalk”. In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell differentiation and we identified sclerostin as one of the myokines produced by muscle cells. Sclerostin is a secreted glycoprotein reportedly expressed by bone/cartilage cells and is considered a negative regulator of bone growth due to its role as an antagonist of the Wnt/β-catenin pathway. Given the inhibitory role of sclerostin in bone, we analyzed its expression by muscle cells and how it affects bone formation and homeostasis. Firstly, we characterized and quantified sclerostin synthesis by a myoblast cell line (C2C12) and by murine primary muscle cells by Western blotting, real-time PCR, immunofluorescence, and ELISA assay. Next, we investigated in vivo production of sclerostin in distinct muscle groups with different metabolic and mechanical loading characteristics. This analysis was done in mice of different ages (6 weeks, 5 and 18 months after birth) and revealed that sclerostin expression is dynamically modulated in a muscle-specific way during the lifespan. Finally, we transiently expressed sclerostin in the hind limb muscles of young mice (2 weeks of age) via in vivo electro-transfer of a plasmid containing the SOST gene in order to investigate the effects of muscle-specific overproduction of the protein. Our data disclosed an inhibitory role of the muscular sclerostin on the bones adjacent to the electroporated muscles. This observation suggests that sclerostin released by skeletal muscle might synergistically interact with osseous sclerostin and potentiate negative regulation of osteogenesis possibly by acting in a paracrine/local fashion. Our data point out a role for muscle as a new source of sclerostin.Bone and muscle have been recognized as endocrine organs since they produce and secrete “hormone-like factors” that can mutually influence each other and other tissues, giving rise to a “bone–muscle crosstalk”. In our study, we made use of myogenic (C2C12 cells) and osteogenic (2T3 cells) cell lines to investigate the effects of muscle cell-produced factors on the maturation process of osteoblasts. We found that the myogenic medium has inhibitory effects on bone cell differentiation and we identified sclerostin as one of the myokines produced by muscle cells. Sclerostin is a secreted glycoprotein reportedly expressed by bone/cartilage cells and is considered a negative regulator of bone growth due to its role as an antagonist of the Wnt/β-catenin pathway. Given the inhibitory role of sclerostin in bone, we analyzed its expression by muscle cells and how it affects bone formation and homeostasis. Firstly, we characterized and quantified sclerostin synthesis by a myoblast cell line (C2C12) and by murine primary muscle cells by Western blotting, real-time PCR, immunofluorescence, and ELISA assay. Next, we investigated in vivo production of sclerostin in distinct muscle groups with different metabolic and mechanical loading characteristics. This analysis was done in mice of different ages (6 weeks, 5 and 18 months after birth) and revealed that sclerostin expression is dynamically modulated in a muscle-specific way during the lifespan. Finally, we transiently expressed sclerostin in the hind limb muscles of young mice (2 weeks of age) via in vivo electro-transfer of a plasmid containing the SOST gene in order to investigate the effects of muscle-specific overproduction of the protein. Our data disclosed an inhibitory role of the muscular sclerostin on the bones adjacent to the electroporated muscles. This observation suggests that sclerostin released by skeletal muscle might synergistically interact with osseous sclerostin and potentiate negative regulation of osteogenesis possibly by acting in a paracrine/local fashion. Our data point out a role for muscle as a new source of sclerostin

    Persistent photocurrent spectroscopy of GaN metal-semiconductor-metal photodetectors on long time scale

    No full text
    Some of the trapping mechanisms responsible for the persistent photocurrent effects in GaN metal–semiconductor–metal photodetectors have been studied on a time scale of several hours by analyzing the photocurrent decay kinetic as a function of temperature. The analysis of the Arrhenius plot of the decay kinetic on a long time scale shows two activation energies of about 140 meV and 1 eV. Such values are in good agreement with two slope changes observed in the room temperature photocurrent spectrum around 2.40 and 3.25 eV, in the GaN energy band gap. According to the Lucovsky theory the 140 meV activation energy was interpreted as due to the transition from a deep localized state to the conduction band edge, whereas the 1 eV activation energy was interpreted as due to the transition from the valence band edge to a deep localized state. Therefore, the persistent photocurrent on long time scale is primarily due to the presence of donor deep and acceptor deep states generated by gallium vacancies, gallium antisites, and carbon impurities

    Impact of dietary lipids on the reverse cholesterol transport : What we learned from animal studies

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER) "Una manera de hacer Europa".Reverse cholesterol transport (RCT) is a physiological mechanism protecting cells from an excessive accumulation of cholesterol. When this process begins in vascular macrophages, it acquires antiatherogenic properties, as has been widely demonstrated in animal models. Dietary lipids, despite representing a fundamental source of energy and exerting multiple biological functions, may induce detrimental effects on cardiovascular health. In the present review we summarize the current knowledge on the mechanisms of action of the most relevant classes of dietary lipids, such as fatty acids, sterols and liposoluble vitamins, with effects on different steps of RCT. We also provide a critical analysis of data obtained from experimental models which can serve as a valuable tool to clarify the effects of dietary lipids on cardiovascular disease

    Temporal aspects of spin-glass neural networks

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D210157 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore