540 research outputs found
Information Flow through a Chaotic Channel: Prediction and Postdiction at Finite Resolution
We reconsider the persistence of information under the dynamics of the
logistic map in order to discuss communication through a nonlinear channel
where the sender can set the initial state of the system with finite
resolution, and the recipient measures it with the same accuracy. We separate
out the contributions of global phase space shrinkage and local phase space
contraction and expansion to the uncertainty in predicting and postdicting the
state of the system. Thus, we determine how the amplification parameter, the
time lag, and the resolution influence the possibility for communication. A
novel representation for real numbers is introduced that allows for a
visualization of the flow of information between scales.Comment: 14 pages, 13 figure
Proper ferroelastic phase transitions in thin epitaxial films with symmetry-conserving and symmetry-breaking misfit strains
We study how the ferroelastic domain structure sets in in an epitaxial film
of a material with second order proper ferroelastic transition. The domain
structures considered are similar to either or
structures in perovskite ferroelectrics. If the "extrinsic" misfit
strain, not associated with the transition, does not break the symmetry of the
high-temperature phase, the phase transition in the film occurs at somewhat
lower temperature compared to the bulk. The loss of stability then occurs with
respect to a sinusoidal strain wave, which evolves into the domain structure
with practically the same geometry and approximately the same period. In the
presence of the symmetry-breaking component of the misfit strain ("extrinsic"
misfit) the character of the phase transition is qualitatively different. In
this case it is a {\em topological} transition between single-domain and
multi-domain states, which starts from a low density of the domain walls.Comment: 7 pages, 2 figures, REVTeX 3.
Measuring Information Transfer
An information theoretic measure is derived that quantifies the statistical
coherence between systems evolving in time. The standard time delayed mutual
information fails to distinguish information that is actually exchanged from
shared information due to common history and input signals. In our new
approach, these influences are excluded by appropriate conditioning of
transition probabilities. The resulting transfer entropy is able to distinguish
driving and responding elements and to detect asymmetry in the coupling of
subsystems.Comment: 4 pages, 4 Figures, Revte
Land Suitability Evaluation of Abandoned Tin-mining Areas for Agricultural Development in Bangka Island, Indonesia
Kepulauan Bangka Belitung, Indonesia is one of the tin mineral-producer in the world. Agricultural crops could be a wise option for the reclamation since abandoned tin-mining lands have a high potency to be used as agricultural lands. This study was aimed to evaluate of the land/soil characteristics of abandoned tin-mining areas and to establish land suitability of the land area for agriculture used to formulate appropriate land development measures and amelioration strategies for utilization of mined areas for crop production. The land evaluation was conducted by comparing the land characteristics in every type of abandoned tin-mining areas with its crop requirements. The current suitability showed that in general food crops, vegetable crops, fruit crops, and industrial crops were consider as not suitable (N). Spice and medicinal crops [pepper (Piper nigrum L.) and citronella (Andropogoh nardus L. Rendle)] were consider as not suitable (N), while the Jatropha (Jatropha curcas L.) and Kemiri Sunan (Aleurites moluccana L. Willd) crops were considered as marginally suitable (S3) in abandoned tin-mining areas. The forest crops and forage crops were considered as marginally suitable (S3). The water availability, soil texture, and low soil fertility were considered as the limiting factors of all crops to get optimum production. For agricultural development, the soil physical and chemical properties of abandoned tin-mining land must be improved through integrated farming
Variability and synchronism of leaf appearance and leaf elongation rates of eleven contrasting rice genotypes
Leaf appearance and leaf elongation rates in rice play an essential role in determining the development of the plants' architecture which affects their adaptability to varying environments. This study aimed to characterize the rates of leaf appearance and elongation on all leaves of the main culms of rice plants for 11 contrasting varieties and to determine if the decrease in the leaf appearance rate was related to a simultaneous decrease in the rate of leaf elongation. Forty four 13-L pots were sown with one plant from one genotype and laid out in 4 randomized complete blocks. The experiment, conducted inside a greenhouse, was repeated twice. The increase in length of the leaves expanding on the main stems was monitored daily until flag leaf. Data were used to estimate the rates of leaf appearance and leaf elongation. Significant variability in the rate of leaf appearance, rate of leaf elongation, and leaf length was found across varieties. The kinetics of leaf appearance had linear phases intermediated by a curvilinear phase, without sharp changes in the phyllochron duration. Maximal leaf elongation rate (LER) of all genotypes (except for one) increased linearly with leaf rank until it reached its maximum value at leaf 8 to 10 (11 - 12 for Azucena) where it stabilized before decreasing linearly with leaf rank for the last leaves. Finally, both rates of leaf appearance and leaf elongation evolved with time more smoothly than expected so no sharp decrease in LER occurred at the time of the decrease in leaf appearance rate of the last leaves. However, the trilinear model fits the data well enough to remain useful in efficiently comparing the leaf appearance kinetics of contrasting varieties. (Résumé d'auteur
Recommended from our members
Fractal Dimension Analysis of Transient Visual Evoked Potentials: Optimisation and Applications
Purpose
The visual evoked potential (VEP) provides a time series signal response to an external visual stimulus at the location of the visual cortex. The major VEP signal components, peak latency and amplitude, may be affected by disease processes. Additionally, the VEP contains fine detailed and non-periodic structure, of presently unclear relevance to normal function, which may be quantified using the fractal dimension. The purpose of this study is to provide a systematic investigation of the key parameters in the measurement of the fractal dimension of VEPs, to develop an optimal analysis protocol for application.
Methods
VEP time series were mathematically transformed using delay time, τ, and embedding dimension, m, parameters. The fractal dimension of the transformed data was obtained from a scaling analysis based on straight line fits to the numbers of pairs of points with separation less than r versus log(r) in the transformed space. Optimal τ, m, and scaling analysis were obtained by comparing the consistency of results using different sampling frequencies. The optimised method was then piloted on samples of normal and abnormal VEPs.
Results
Consistent fractal dimension estimates were obtained using τ = 4 ms, designating the fractal dimension = D2 of the time series based on embedding dimension m = 7 (for 3606 Hz and 5000 Hz), m = 6 (for 1803 Hz) and m = 5 (for 1000Hz), and estimating D2 for each embedding dimension as the steepest slope of the linear scaling region in the plot of log(C(r)) vs log(r) provided the scaling region occurred within the middle third of the plot. Piloting revealed that fractal dimensions were higher from the sampled abnormal than normal achromatic VEPs in adults (p = 0.02). Variances of fractal dimension were higher from the abnormal than normal chromatic VEPs in children (p = 0.01).
Conclusions
A useful analysis protocol to assess the fractal dimension of transformed VEPs has been developed
Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment
Background
Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival.
Methods/design
Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored.
Discussion
This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives
Improvement of Energy and Materials Efficiencies by Introducing Multiple-Wire Welding
The paper deals with a study and comparison between welding with several wires in different shielding atmospheres and single-wire welding. The first part treats the equipment for multiple-wire electrode welding and a comparison between single-wire welding and twin-wire welding. The second part deals with the melting rate as a basis for determining the productivity of welding processes, and the third one with the energy efficiency as a criterion of cost-effectiveness of welding. Some results obtained regarding strength of submerged arc welded joints are shown
Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures
A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is
presented, which enables the thermodynamic description of dense laminar
polydomain states in epitaxial ferroelectric thin films. The theory explicitly
takes into account the mechanical substrate effect on the polarizations and
lattice strains in dissimilar elastic domains (twins). Numerical calculations
are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic
substrates. The "misfit strain-temperature" phase diagrams are developed for
these films, showing stability ranges of various possible polydomain and
single-domain states. Three types of polarization instabilities are revealed
for polydomain epitaxial ferroelectric films, which may lead to the formation
of new polydomain states forbidden in bulk crystals. The total dielectric and
piezoelectric small-signal responses of polydomain films are calculated,
resulting from both the volume and domain-wall contributions. For BaTiO3 films,
strong dielectric anomalies are predicted at room temperature near special
values of the misfit strain.Comment: 19 pages, 8 figure
- …
