232 research outputs found
Diverse hypolithic refuge communities in the McMurdo Dry Valleys
Hyper-arid deserts present extreme challenges to life. The environmental buffering provided by quartz and other translucent rocks allows hypolithic microbial communities to develop on sub-soil surfaces of such rocks. These refuge communities have been reported, for many locations worldwide, to be predominantly cyanobacterial in nature. Here we report the discovery in Antarctica’s hyper-arid McMurdo Dry Valleys of three clearly distinguishable types of hypolithic community. Based on gross colonization morphology and identification of dominant taxa, we have classified hypolithic communities as Type I (cyanobacterial dominated), Type II (fungal dominated) and Type III (moss dominated). This discovery supports a growing awareness of the high biocomplexity in Antarctic deserts, emphasizes the possible importance of cryptic microbial communities in nutrient cycling and provides evidence for possible successional community processes within a cold arid landscape
Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica
Bacteria are assumed to disperse widely via aerosolized transport due to their small size and resilience. The question of microbial endemicity in isolated populations is directly related to the level of airborne exogenous inputs, yet this has proven hard to identify. The ice-free terrestrial ecosystem of Antarctica, a geographically and climatically isolated continent, was used to interrogate microbial bio-aerosols in relation to the surrounding ecology and climate. High-throughput sequencing of bacterial ribosomal RNA (rRNA) genes was combined with analyses of climate patterns during an austral summer. In general terms, the aerosols were dominated by Firmicutes, whereas surrounding soils supported Actinobacteria-dominated communities. The most abundant taxa were also common to aerosols from other continents, suggesting that a distinct bio-aerosol community is widely dispersed. No evidence for significant marine input to bio-aerosols was found at this maritime valley site, instead local influence was largely from nearby volcanic sources. Back trajectory analysis revealed transport of incoming regional air masses across the Antarctic Plateau, and this is envisaged as a strong selective force. It is postulated that local soil microbial dispersal occurs largely via stochastic mobilization of mineral soil particulates
Comparison of DNA and RNA, and Cultivation Approaches for the Recovery of Terrestrial and Aquatic Fungi from Environmental Samples
Estimates of fungal biodiversity from environmental samples are all subject to bias. Major issues are that the commonly adopted cultivation-based approaches are suitable for taxa which grow readily under laboratory conditions, while the DNA-based approaches provide more reliable estimates, but do not indicate whether taxa are metabolically active. In this study, we have evaluated these approaches to estimate the fungal diversity in soil and freshwater samples from a subtropical forest, and compared these to RNA-based culture-independent approach intended to indicate the metabolically active fungal assemblage. In both soil and freshwater samples, the dominant taxon recovered by all three approaches was the same (Anguillospora furtiva). This taxon was cultivable from all samples and comprised 85–86 % DNA libraries and 90–91 % RNA libraries. The remaining taxa were phylogenetically diverse and spanned the Ascomycota, Basidiomycota, and Fungi incertae sedis. Their recovery was not consistent among the three approaches used and suggests that less abundant members of the assemblage may be subjected to greater bias when diversity estimates employ a single approach. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00284-012-0256-7) contains supplementary material, which is available to authorized users
Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile
Quartz stones are ubiquitous in deserts and are a substrate for hypoliths, microbial colonists of the underside of such stones. These hypoliths thrive where extreme temperature and moisture stress limit the occurrence of higher plant and animal life. Several studies have reported the occurrence of green hypolithic colonization dominated by cyanobacteria. Here, we describe a novel red hypolithic colonization from Yungay, at the hyper-arid core of the Atacama Desert in Chile. Comparative analysis of green and red hypoliths from this site revealed markedly different microbial community structure as revealed by 16S rRNA gene clone libraries. Green hypoliths were dominated by cyanobacteria (Chroococcidiopsis and Nostocales phylotypes), whilst the red hypolith was dominated by a taxonomically diverse group of chloroflexi. Heterotrophic phylotypes common to all hypoliths were affiliated largely to desiccation-tolerant taxa within the Actinobacteria and Deinococci. Alphaproteobacterial phylotypes that affiliated with nitrogen-fixing taxa were unique to green hypoliths, whilst Gemmatimonadetes phylotypes occurred only on red hypolithon. Other heterotrophic phyla recovered with very low frequency were assumed to represent functionally relatively unimportant taxa
Biogeography of photoautotrophs in the high polar biome
The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favourable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on polar plant diversity and to the current status of plants in Arctic and Antarctic conservation policy frameworks
Recommended from our members
Draft genome sequence of uncultured upland soil cluster gammaproteobacteria gives molecular insights into high-affinity methanotrophy
Aerated soils form the second largest sink for atmospheric CH₄. A nearcomplete genome of uncultured upland soil cluster Gammaproteobacteria that oxidize CH₄ at 2.5 ppmv was obtained from incubated Antarctic mineral cryosols. This first genome of high-affinity methanotrophs can help resolve the mysteries about their phylogenetic affiliation and metabolic potential
Recommended from our members
Erratum for Edwards et al., “Draft genome sequence of uncultured upland soil cluster Gammaproteobacteria gives molecular insights into high-affinity methanotrophy”
Erratum for Edwards et al., “Draft Genome Sequence of Uncultured Upland Soil Cluster Gammaproteobacteria Gives Molecular Insights into High-Affinity Methanotrophy”
Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile)
A previously established chronosequence from Pia Glacier forefield in Tierra del Fuego (Chile) containing soils of different ages (from bare soils to forest ones) is analyzed. We used this chronosequence as framework to postulate that microbial successional development would be accompanied by changes in functionality. To test this, the GeoChip functional microarray was used to identify diversity of genes involved in microbial carbon and nitrogen metabolism, as well as other genes related to microbial stress response and biotic interactions. Changes in putative functionality generally reflected succession-related taxonomic composition of soil microbiota. Major shifts in carbon fixation and catabolism were observed, as well as major changes in nitrogen metabolism. At initial microbial dominated succession stages, microorganisms could be mainly involved in pathways that help to increase nutrient availability, while more complex microbial transformations such as denitrification and methanogenesis, and later degradation of complex organic substrates, could be more prevalent at vegetated successional states. Shifts in virus populations broadly reflected changes in microbial diversity. Conversely, stress response pathways appeared relatively well conserved for communities along the entire chronosequence. We conclude that nutrient utilization is likely the major driver of microbial succession in these soils. [Int Microbiol 19(3):161-173 (2016)]Keywords: Functional genes · antibiotic resistance · GeoChip microarray · primary succession · chronosequenc
Evidence of species recruitment and development of hot desert hypolithic communities
Hypoliths, photosynthetic microbial assemblages found underneath translucent rocks, are widely distributed within the western region of the Namib Desert and other similar environments. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to assess the bacterial community structure of hypoliths and surrounding soil (below and adjacent to the hypolithic rock) at a fine scale (10 m radius). Multivariate analysis of T-RFs showed that hypolithic and soil communities were structurally distinct. T-RFLP-derived operational taxonomic units were linked to 16S rRNA gene clone libraries. Applying the ecological concept of ‘indicator species’, six and nine indicator lineages were identified for hypoliths and soil, respectively. Hypolithic communities were dominated by cyanobacteria affiliated to Pleurocapsales, whereas actinobacteria were prevalent in the soil. These results are consistent with the concept of species sorting and suggest that the bottom of the quartz rocks provides conditions suitable for the development of discrete and demonstrably different microbial assemblages. However, we found strong evidence for neutral assembly processes, as almost 90% of the taxa present in the hypoliths were also detected in the soil. These results suggest that hypolithons do not develop independently from microbial communities found in the surrounding soil, but selectively recruit from local populations.Innovation Fund UID 71682(PhD. scholarship for TPM), the National Research Fund of South Africa and the University of the Western Cape (T.P.M, A.V, I.M.T, and D.A.C). D.C.L. and S.B.P. were funded by the Hong Kong Research Grants Council (Grant number HKU7733/08HKU7763/10).http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1758-2229hb201
- …