51 research outputs found

    Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and exercise

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordRodent skeletal muscle contains a large store of nitrate that can be augmented by the consumption of dietary nitrate. This muscle nitrate reservoir has been found to be an important source of nitrite and nitric oxide (NO), via its reduction by tissue xanthine oxidoreductases (XOR). To explore if this pathway is also active in human skeletal muscle during exercise, and if it is sensitive to local nitrate availability, we assessed exercise-induced changes in muscle nitrate and nitrite concentrations in young healthy humans, under baseline conditions and following dietary nitrate consumption. We found that baseline nitrate and nitrite concentrations were far higher in muscle than in plasma (∼4-fold and ∼29-fold, respectively), and that the consumption of a single bolus of dietary nitrate (12.8 mmol) significantly elevated nitrate concentration in both plasma (∼19 fold) and muscle (∼5 fold). Consistent with these observations, and with previous suggestions of active muscle nitrate transport, we present Western blot data to show significant expression of the active nitrate/nitrite transporter, sialin, in human skeletal muscle. Furthermore, we report an exercise-induced reduction in human muscle nitrate concentration (by ∼39%), but only in the presence of an increased muscle nitrate store. Our results indicate that human skeletal muscle nitrate stores are sensitive to dietary nitrate intake and may contribute to NO generation during exercise. Together, these findings suggest that skeletal muscle plays an important role in the transport, storage and metabolism of nitrate in humans. This article is protected by copyright. All rights reserved

    Celiac disease diagnosis and gluten-free food analytical control

    Full text link

    Fluorescence quenching and electron spin resonance study of percolation in a two-phase lipid bilayer containing bacteriorhodopsin

    No full text
    The effect of bacteriorhodopsin (BR) on the percolation properties of dimyristoylphosphatidylcholine/distearoylphosphatidylcholine bilayers was examined by studying the quenching of a lipid-bound fluorophore by a lipid-bound quencher, and by spin-spin interactions of a nitroxide-labeled lipid using electron spin resonance (ESR). At the low concentrations of BR used, differential scanning calorimetry showed that although the transition enthalpy was reduced in a concentration-dependent manner by incorporation of BR, the solidus and fluidus phase boundaries and overall shape of the heat capacity profiles were essentially unchanged. However, fluorescence quenching and spin-label ESR data showed that the domain topology, as reflected in the percolation properties, is strongly affected by the protein. In contrast to our previous fluorescence data for the pure lipid mixtures, quenching in the coexistence region is independent of the fluid phase fraction when BR is present. In addition, the percolation threshold estimated by spin-label ESR is shifted in the presence of BR to a higher gel phase fraction at a given lipid composition. Both the fluorescence quenching and spin-label ESR data, together with the results of earlier simulations, strongly suggest that the fluid phase domains are substantially larger and/or less ramified in the presence of BR than in its absence. We have previously reported a similar effect of a transmembrane peptide, pOmpA (Escherichia coli outer membrane protein A signal peptide), on fluid domain connectivity in binary phosphatidylcholine mixtures

    Discrepancy between phase behavior of lung surfactant phospholipids and the classical model of surfactant function.

    Get PDF
    The studies reported here used fluorescence microscopy and Brewster angle microscopy to test the classical model of how pulmonary surfactant forms films that are metastable at high surface pressures in the lungs. The model predicts that the functional film is liquid-condensed (LC) and greatly enriched in dipalmitoyl phosphatidylcholine (DPPC). Both microscopic methods show that, in monolayers containing the complete set of phospholipids from calf surfactant, an expanded phase persists in coexistence with condensed domains at surface pressures approaching 70 mN/m. Constituents collapsed from the interface above 45 mN/m, but the relative area of the two phases changed little, and the LC phase never occupied more than 30% of the interface. Calculations based on these findings and on isotherms obtained on the continuous interface of a captive bubble estimated that collapse of other constituents increased the mol fraction of DPPC to no higher than 0.37. We conclude that monolayers containing the complete set of phospholipids achieve high surface pressures without forming a homogeneous LC film and with a mixed composition that falls far short of the nearly pure DPPC predicted previously. These findings contradict the classical model

    Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance

    No full text
    Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in myriad physiological processes, including the regulation of vascular tone, neurotransmission, mitochondrial respiration, and skeletal muscle contractile function. NO may be produced via the canonical NO synthase-catalyzed oxidation of l-arginine and also by the sequential reduction of nitrate to nitrite and then NO. The body's nitrate stores can be augmented by the ingestion of nitrate-rich foods (primarily green leafy vegetables). NO bioavailability is greatly enhanced by the activity of bacteria residing in the mouth, which reduce nitrate to nitrite, thereby increasing the concentration of circulating nitrite, which can be reduced further to NO in regions of low oxygen availability. Recent investigations have focused on promoting this nitrate-nitrite-NO pathway to positively affect indices of cardiovascular health and exercise tolerance. It has been reported that dietary nitrate supplementation with beetroot juice lowers blood pressure in hypertensive patients, and sodium nitrite supplementation improves vascular endothelial function and reduces the stiffening of large elastic arteries in older humans. Nitrate supplementation has also been shown to enhance skeletal muscle function and to improve exercise performance in some circumstances. Recently, it has been established that nitrate concentration in skeletal muscle is much higher than that in blood and that muscle nitrate stores are exquisitely sensitive to dietary nitrate supplementation and deprivation. In this review, we consider the possibility that nitrate represents an essential storage form of NO and discuss the integrated function of the oral microbiome, circulation, and skeletal muscle in nitrate-nitrite-NO metabolism, as well as the practical relevance for health and performance
    • …
    corecore