38 research outputs found

    Psychometric properties of the Multidimensional Health Locus of Control Scale Form C in a non-Western culture

    Get PDF
    Form C of the Multidimensional Health Locus of Control Scales (MHLC-C) was designed to investigate health-related control beliefs of persons with an existing medical condition. The aim of the present study was to examine the psychometric properties of this instrument in a culture characterized by external control beliefs and learned helplessness鈥攃ontrary to the societal context of original test development. Altogether, 374 Hungarian patients with cancer, irritable bowel syndrome, diabetes, and cardiovascular and musculoskeletal disorders were enrolled in the study. Besides the MHLC-C, instruments measuring general control beliefs, anxiety, depression, self-efficacy, and health behaviors were also administered to evaluate the validity of the scale. Both exploratory and confirmatory factor analytic techniques were used to investigate the factor structure of the scale. Our results showed that the Hungarian adaptation of the instrument had a slightly different structure than the one originally hypothesized: in the present sample, a three-factor structure emerged where the items of the Doctors and the Others subscales loaded onto a single common component. Internal reliability of all three subscales was adequate (alphas between .71 and .79). Data concerning the instrument's validity were comparable with previous results from Western countries. These findings may suggest that health locus of control can be construed very similarly to Western countries even in a post-communist society鈥攔egardless of the potential differences in general control beliefs

    Subcellular Distribution of Mitochondrial Ribosomal RNA in the Mouse Oocyte and Zygote

    Get PDF
    Mitochondrial ribosomal RNAs (mtrRNAs) have been reported to translocate extra-mitochondrially and localize to the germ cell determinant of oocytes and zygotes in some metazoa except mammals. To address whether the mtrRNAs also localize in the mammals, expression and distribution of mitochondrion-encoded RNAs in the mouse oocytes and zygotes was examined by whole-mount in situ hybridization (ISH). Both 12S and 16S rRNAs were predominantly distributed in the animal hemisphere of the mature oocyte. This distribution pattern was rearranged toward the second polar body in zygotes after fertilization. The amount of mtrRNAs decreased around first cleavage, remained low during second cleavage and increased after third cleavage. Staining intensity of the 12S rRNA was weaker than that of the 16S rRNA throughout the examined stages. Similar distribution dynamics of the 16S rRNA was observed in strontium-activated haploid parthenotes, suggesting the distribution rearrangement does not require a component from sperm. The distribution of 16S rRNAs did not coincide with that of mitochondrion-specific heat shock protein 70, suggesting that the mtrRNA is translocated from mitochondria. The ISH-scanning electron microscopy confirms the extra-mitochondrial mtrRNA in the mouse oocyte. Chloramphenicol (CP) treatment of late pronuclear stage zygotes perturbed first cleavage as judged by the greater than normal disparity in size of blastomeres of 2-cell conceptuses. Two-third of the CP-treated zygotes arrested at either 2-cell or 3-cell stage even after the CP was washed out. These findings indicate that the extra-mitochondrial mtrRNAs are localized in the mouse oocyte and implicated in correct cytoplasmic segregation into blastomeres through cleavages of the zygote

    Muscular dystrophies: diagnostic approaches in Hungary

    No full text
    Muscular dystrophies are a genetically heterogeneous group of degenerative muscle disorders. This article focuses on two severe forms of muscular dystrophies and provides genetic data for a large cohort of Hungarian patients diagnosed within the last few years by the authors.The Duchenne/Becker muscular dystrophy (DMD/BMD) is caused by mutations in the dystrophin gene, which is located on chromosome Xp21. The genetic analysis of dystrophin is usually performed by multiplex polymerase chain reaction (PCR), which detects approximately 95% of all deletions but does not distinguish between one and two copies of the exons investigated. The present work, therefore, concentrates on the improvement of the diagnostic panel for the analysis of DMD/BMD in Hungary. Radioactively labelled cDNA probes, encompassing the whole dystrophin gene detect all the deletions and the analysis is quantitative. In addition, the new multiple ligationdependent probe amplification (MLPA) technique was recently introduced that enabled more reliable and faster quantitative detection of the entire dystrophin gene. The genomic basis of facioscapulohumeral muscular dystrophy (FSHD) is associated with contraction of the D4Z4 repeat region in the subtelomere of chromosome 4q. In case of FSHD, molecular genetic criteria still have to be improved because of the complexity of the disorder
    corecore