26,389 research outputs found

    The Bose gas beyond mean field

    Full text link
    We study a homogeneous Bose gas with purely repulsive forces. Using the Kac scaling of the binary potential we derive analytically the form of the thermodynamic functions of the gas for small but finite values of the scaling parameter in the low density regime. In this way we determine dominant corrections to the mean-field theory. It turns out that repulsive forces increase the pressure at fixed density and decrease the density at given chemical potential (the temperature is kept constant). They also flatten the Bose momentum distribution. However, the present analysis cannot be extended to the region where the mean-field theory predicts the appearence of condensate.Comment: 19 pages, 3 figure

    Discrete rearranging disordered patterns, part I: Robust statistical tools in two or three dimensions

    Full text link
    Discrete rearranging patterns include cellular patterns, for instance liquid foams, biological tissues, grains in polycrystals; assemblies of particles such as beads, granular materials, colloids, molecules, atoms; and interconnected networks. Such a pattern can be described as a list of links between neighbouring sites. Performing statistics on the links between neighbouring sites yields average quantities (hereafter "tools") as the result of direct measurements on images. These descriptive tools are flexible and suitable for various problems where quantitative measurements are required, whether in two or in three dimensions. Here, we present a coherent set of robust tools, in three steps. First, we revisit the definitions of three existing tools based on the texture matrix. Second, thanks to their more general definition, we embed these three tools in a self-consistent formalism, which includes three additional ones. Third, we show that the six tools together provide a direct correspondence between a small scale, where they quantify the discrete pattern's local distortion and rearrangements, and a large scale, where they help describe a material as a continuous medium. This enables to formulate elastic, plastic, fluid behaviours in a common, self-consistent modelling using continuous mechanics. Experiments, simulations and models can be expressed in the same language and directly compared. As an example, a companion paper (Marmottant, Raufaste and Graner, joint paper) provides an application to foam plasticity

    Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels

    Full text link
    This paper presents a microfluidic device that implements standing surface acoustic waves in order to handle single cells, droplets, and generally particles. The particles are moved in a very controlled manner by the two-dimensional drifting of a standing wave array, using a slight frequency modulation of two ultrasound emitters around their resonance. These acoustic tweezers allow any type of motion at velocities up to few 10mm/s, while the device transparency is adapted for optical studies. The possibility of automation provides a critical step in the development of lab-on-a-chip cell sorters and it should find applications in biology, chemistry, and engineering domains

    Boundary monomers in the dimer model

    Get PDF
    The correlation functions of an arbitrary number of boundary monomers in the system of close-packed dimers on the square lattice are computed exactly in the scaling limit. The equivalence of the 2n-point correlation functions with those of a complex free fermion is proved, thereby reinforcing the description of the monomer-dimer model by a conformal free field theory with central charge c=1.Comment: 15 pages, 2 figure

    Drosophila as a model system to study nonautonomous mechanisms affecting tumour growth and cell death

    Get PDF
    The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology

    Matrix Product State description of the Halperin States

    Full text link
    Many fractional quantum Hall states can be expressed as a correlator of a given conformal field theory used to describe their edge physics. As a consequence, these states admit an economical representation as an exact Matrix Product States (MPS) that was extensively studied for the systems without any spin or any other internal degrees of freedom. In that case, the correlators are built from a single electronic operator, which is primary with respect to the underlying conformal field theory. We generalize this construction to the archetype of Abelian multicomponent fractional quantum Hall wavefunctions, the Halperin states. These latest can be written as conformal blocks involving multiple electronic operators and we explicitly derive their exact MPS representation. In particular, we deal with the caveat of the full wavefunction symmetry and show that any additional SU(2) symmetry is preserved by the natural MPS truncation scheme provided by the conformal dimension. We use our method to characterize the topological order of the Halperin states by extracting the topological entanglement entropy. We also evaluate their bulk correlation length which are compared to plasma analogy arguments.Comment: 23 pages, 16 figure

    A numerical study of viscous vortex rings using a spectral method

    Get PDF
    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass

    Fluctuation-enhanced electric conductivity in electrolyte solutions

    Full text link
    In this letter we analyze the effects of an externally applied electric field on thermal fluctuations for a fluid containing charged species. We show in particular that the fluctuating Poisson-Nernst-Planck equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation, result in enhanced charge transport. Although this transport is advective in nature, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity. We calculate the renormalized electric conductivity by deriving and integrating the structure factor coefficients of the fluctuating quantities and show that the renormalized electric conductivity and diffusion coefficients are consistent although they originate from different noise terms. In addition, the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, and provides a quantitative theory that predicts a non-zero cross-diffusion Maxwell-Stefan coefficient that agrees well with experimental measurements. Finally, we show that strong applied electric fields result in anisotropically enhanced velocity fluctuations and reduced fluctuations of salt concentrations.Comment: 12 pages, 1 figur

    A Special Class of Rank 10 and 11 Coxeter Groups

    Get PDF
    In the course of investigating regular subalgebras of E(10) related to cosmological solutions of 11-dimensional supergravity supporting an electric 4-form field, a class of rank 10 Coxeter subgroups of the Weyl group of E(10) was uncovered (hep-th/0606123). These Coxeter groups all share the property that their Coxeter graphs have incidence index 3, i.e. that each node is incident to three and only three single lines. Furthermore, the Coxeter exponents are either 2 or 3, but never infinity. We here go beyond subgroups of the Weyl group of E(10) and classify all rank 10 Coxeter groups with these properties. We find 21 distinct Coxeter groups of which 7 were already described in hep-th/0606123. Moreover, we extend the classification to the rank 11 case and we find 252 inequivalent rank 11 Coxeter groups with incidence index 4, of which at least 28 can be regularly embedded into E(11).Comment: 20 pages, Typos corrected, Erratum added correcting the total number of rank 11 Coxeter graphs with incidence index
    corecore