7 research outputs found

    Experimental evaluation of digitally verifiable photonic computing for blockchain and cryptocurrency

    Get PDF
    As blockchain technology and cryptocurrency become increasingly mainstream, photonic computing has emerged as an efficient hardware platform that reduces ever-increasing energy costs required to verify transactions in decentralized cryptonetworks. To reduce sensitivity of these verifications to photonic hardware error, we propose and experimentally demonstrate a cryptographic scheme, LightHash, that implements robust, low-bit precision matrix multiplication in programmable silicon photonic networks. We demonstrate an error mitigation scheme to reduce error by averaging computation across circuits, and simulate energy-efficiency-error trade-offs for large circuit sizes. We conclude that our error-resistant and efficient hardware solution can potentially generate a new market for decentralized photonic blockchain

    Tutorial: Photonic neural networks in delay systems

    No full text
    International audiencePhotonic delay systems have revolutionized the hardware implementation of Recurrent Neural Networks and Reservoir Computing in particular. The fundamental principles of Reservoir Computing strongly facilitate a realization in such complex analog systems. Especially delay systems, which potentially provide large numbers of degrees of freedom even in simple architectures, can efficiently be exploited for information processing. The numerous demonstrations of their performance led to a revival of photonic Artificial Neural Network. Today, an astonishing variety of physical substrates, implementation techniques as well as network architectures based on this approach have been successfully employed. Important fundamental aspects of analog hardware Artificial Neural Networks have been investigated, and multiple high-performance applications have been demonstrated. Here, we introduce and explain the most relevant aspects of Artificial Neural Networks and delay systems, the seminal experimental demonstrations of Reservoir Computing in photonic delay systems, plus the most recent and advanced realizations
    corecore