80 research outputs found
Interaction of Ihh and BMP/Noggin Signaling during Cartilage Differentiation
AbstractBone morphogenetic proteins (BMPs) have been implicated in regulating multiple stages of bone development. Recently it has been shown that constitutive activation of theBMP receptor-IAblocks chondrocyte differentiation in a similar manner as misexpression ofIndian hedgehog.In this paper we analyze the role of BMPs as possible mediators of Indian hedgehog signaling and useNogginmisexpression to gain insight into additional roles of BMPs during cartilage differentiation. We show by comparative analysis ofBMPandIhhexpression domains that the borders ofIndian hedgehogexpression in the chondrocytes are reflected in changes of the expression level of severalBMPgenes in the adjacent perichondrium. We further demonstrate that misexpression ofIndian hedgehogappears to directly upregulateBMP2andBMP4expression, independent of the differentiation state of the flanking chondrocytes. In contrast, changes inBMP5andBMP7expression in the perichondrium correspond to altered differentiation states of the flanking chondrocytes. In addition,NogginandChordin,which are both expressed in the developing cartilage elements, also change their expression pattern afterIhhmisexpression. Finally, we use retroviral misexpression ofNoggin,a potent antagonist of BMP signaling, to gain insight into additional roles of BMP signaling during cartilage differentiation. We find that BMP signaling is necessary for the growth and differentiation of the cartilage elements. In addition, this analysis revealed that the members of the BMP/Noggin signaling pathway are linked in a complex autoregulatory network
A Double-Quality-Guaranteed (DQG) Renting Scheme For Service Providers
A fresh double renting scheme is proposed for service providers. It unites long-term renting with short-term renting, which can not only please quality-of-service requirements under the varying supplier for profit maximization is devise and two kinds of optimal solutions, i.e., the ideal solutions and the actual solutions, are get respectively. A series of contrast are given to confirm the performance of our scheme. The results show that the proposed Double-Quality-Guaranteed (DQG) renting scheme can realize more profit than the compared Single-Quality-Unguaranteed (SQU) renting scheme in the foundation of guaranteeing the service quality entirel
Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress
In recent years evolutionary ecologists have become increasingly interested in the effects of reactive
oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly
due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen
peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine
the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout
Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over
a timescale from hours to days. The method is flexible with regard to the duration of exposure and
initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2
levels were consistent across subsamples of the same liver but differed between muscle subsamples
and between tissues of the same animal. The MitoB method provides a convenient method for
measuring ROS levels in living animals over a significant period of time. Given its wide range of possible
applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in
ecological settings
Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
<p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells.</p> <p>Methods</p> <p>The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth <it>in vivo </it>were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression.</p> <p>Results</p> <p>BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10.</p> <p>Conclusions</p> <p>These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.</p
Maternal hypoxia decreases capillary supply and increases metabolic inefficiency leading to divergence in myocardial oxygen supply and demand
Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14 C-labelled glucose and 3 H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3 H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia
Interaction of TGFβ and BMP Signaling Pathways during Chondrogenesis
TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI) in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro
Chloroplast localization of Cry1Ac and Cry2A protein- an alternative way of insect control in cotton
- …