9,449 research outputs found

    Desirable Host Plant Qualities in Wild Rice \u3ci\u3e(Zizania Palustris)\u3c/i\u3e for Infestation by the Rice Worm \u3ci\u3eApamea Apamiformis\u3c/i\u3e (Lepidoptera: Noctuidae)

    Get PDF
    The rate at which an insect infests hosts by ovipositioning and/or subsequent growth of larvae often depends on specific desirable host plant qualities. In this study, we measured the infestation rate of wild rice, Zizania palustris, by the wild rice worm, Apamea apamiformis, D. F. Hardwick (Lepidoptera: Noctuidae) and compared it to sediment nitrogen availability, plant biomass, plant density, litter accumulation, and seed carbohydrate and nitrogen concentration. Plant density and litter accumulation had no effect on infestation rates. Infestation rate increased with plant biomass and sediment nitrogen availability. The correlation between infestation rate and sediment nitrogen availability seems to reflect the fact that high nitrogen availability produces larger plants rather than more nutritious seeds as the infestation rate was not correlated with seed glucose content and surprisingly decreased with concentration of nitrogen in seeds. Infestation rate was not related to any other measured quantities. Therefore, Apamea appear to infest larger, rapidly growing host plants which are made possible by high sediment nitrogen availability

    The Climate Gap: Inequalities in How Climate Change Hurts Americans & How to Close the Gap

    Get PDF
    By now, virtually all Americans concur that climate change is real, and could pose devastating consequences for our nation and our children. Equally real is the "Climate Gap" -- the sometimes hidden and often-unequal impact climate change will have on people of color and the poor in the United States. This report helps to document the Climate Gap, connecting the dots between research on heat waves, air quality, and other challenges associated with climate change. But we do more than point out an urgent problem; we also explore how we might best combine efforts to both solve climate change and close the Climate Gap -- including an appendix focused on California's global warming policy and a special accompanying analysis of the federal-level American Clean Energy Security Act

    A model of large-scale proteome evolution

    Get PDF
    The next step in the understanding of the genome organization, after the determination of complete sequences, involves proteomics. The proteome includes the whole set of protein-protein interactions, and two recent independent studies have shown that its topology displays a number of surprising features shared by other complex networks, both natural and artificial. In order to understand the origins of this topology and its evolutionary implications, we present a simple model of proteome evolution that is able to reproduce many of the observed statistical regularities reported from the analysis of the yeast proteome. Our results suggest that the observed patterns can be explained by a process of gene duplication and diversification that would evolve proteome networks under a selection pressure, favoring robustness against failure of its individual components

    Gradient-limited surfaces

    Full text link
    A simple scenario of the formation of geological landscapes is suggested and the respective lattice model is derived. Numerical analysis shows that the arising non-Gaussian surfaces are characterized by the scale-dependent Hurst exponent, which varies from 0.7 to 1, in agreement with experimental data.Comment: 4 pages, 5 figure

    Typical medium theory of Anderson localization: A local order parameter approach to strong disorder effects

    Full text link
    We present a self-consistent theory of Anderson localization that yields a simple algorithm to obtain \emph{typical local density of states} as an order parameter, thereby reproducing the essential features of a phase-diagram of localization-delocalization quantum phase transition in the standard lattice models of disordered electron problem. Due to the local character of our theory, it can easily be combined with dynamical mean-field approaches to strongly correlated electrons, thus opening an attractive avenue for a genuine {\em non-perturbative} treatment of the interplay of strong interactions and strong disorder.Comment: 7 pages, 4 EPS figures, revised version to appear in Europhysics Letter

    Desirable Host Plant Qualities in Wild Rice \u3ci\u3e(Zizania Palustris)\u3c/i\u3e for Infestation by the Rice Worm \u3ci\u3eApamea Apamiformis\u3c/i\u3e (Lepidoptera: Noctuidae)

    Get PDF
    The rate at which an insect infests hosts by ovipositioning and/or subsequent growth of larvae often depends on specific desirable host plant qualities. In this study, we measured the infestation rate of wild rice, Zizania palustris, by the wild rice worm, Apamea apamiformis, D. F. Hardwick (Lepidoptera: Noctuidae) and compared it to sediment nitrogen availability, plant biomass, plant density, litter accumulation, and seed carbohydrate and nitrogen concentration. Plant density and litter accumulation had no effect on infestation rates. Infestation rate increased with plant biomass and sediment nitrogen availability. The correlation between infestation rate and sediment nitrogen availability seems to reflect the fact that high nitrogen availability produces larger plants rather than more nutritious seeds as the infestation rate was not correlated with seed glucose content and surprisingly decreased with concentration of nitrogen in seeds. Infestation rate was not related to any other measured quantities. Therefore, Apamea appear to infest larger, rapidly growing host plants which are made possible by high sediment nitrogen availability
    corecore