51 research outputs found

    Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci

    Get PDF
    Abstract The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification

    Isomeric cross-section ratios for (n, 2n) reactions induced by 14.7 MeV neutrons in In and Sb

    No full text

    Cross sections of the (n, p) and (n, ?) reactions induced in Manganese by 14.7 MeV neutrons

    No full text

    Isomeric cross section ratio for110Pd(n,2n)109Pd reaction at 14.7 MeV

    No full text
    corecore