2,532 research outputs found
Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory
Using numerical simulations of quenched SU(2) gauge theory we demonstrate
that an external magnetic field leads to spontaneous generation of quark
condensates with quantum numbers of electrically charged rho mesons if the
strength of the magnetic field exceeds the critical value eBc = 0.927(77) GeV^2
or Bc =(1.56 \pm 0.13) 10^{16} Tesla. The condensation of the charged rho
mesons in strong magnetic field is a key feature of the magnetic-field-induced
electromagnetic superconductivity of the vacuum.Comment: 14 pages, 5 figures, 2 tables, elsarticle style; continuum limit is
analyzed, best fit parameters are presented in Table 2, published versio
On the stability of standing matter waves in a trap
We discuss excited Bose-condensed states and find the criterion of dynamical
stability of a kink-wise state, i.e., a standing matter wave with one nodal
plane perpendicular to the axis of a cylindrical trap. The dynamical stability
requires a strong radial confinement corresponding to the radial frequency
larger than the mean-field interparticle interaction. We address the question
of thermodynamic instability related to the presence of excitations with
negative energy.Comment: 4 pages, 3 figure
The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil
The critical-velocity behavior of oscillatory superfluid Helium-4 flow
through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil
has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up
to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during
which the frequency remained below 400 Hz, the critical velocity was a
nearly-linearly decreasing function of increasing temperature throughout the
region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi
phase slips could be observed at the onset of dissipation. In runs with
frequencies higher than 400 Hz, downward curvature was observed in the decrease
of critical velocity with increasing temperature. In addition, above 500 Hz an
alteration in supercritical behavior was seen at the lower temperatures,
involving the appearance of large energy-loss events. These irregular events
typically lasted a few tens of half-cycles of oscillation and could involve
hundreds of times more energy loss than would have occurred in a single
complete 2 Pi phase slip at maximum flow. The temperatures at which this
altered behavior was observed rose with frequency, from ~ 0.6 K and below, at
500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203
Shape deformations and angular momentum transfer in trapped Bose-Einstein condensates
Angular momentum can be transferred to a trapped Bose-Einstein condensate by
distorting its shape with an external rotating field, provided the rotational
frequency is larger than a critical frequency fixed by the energy and angular
momentum of the excited states of the system. By using the Gross-Pitaevskii
equation and sum rules, we explore the dependence of such a critical frequency
on the multipolarity of the excitations and the asymmetry of the confining
potential. We also discuss its possible relevance for vortex nucleation in
rotating traps.Comment: 4 pages revtex, 2 figures include
Factors associated with the decision to investigate child protective services referrals: a systematic review
Background: Limited resources for child protection create challenging decision situations for child protective services (CPS) workers at the point of intake. A body of research has examined the factors associated with worker decisions and processes using a variety of methodological approaches to gain knowledge on decision-making. However, few attempts have been made to systematically review this literature.
Objective: As part of a larger project on decision-making at intake, this systematic review addressed the question of the factors associated with worker decisions to investigate alleged maltreatment referrals.
Methods: Quantitative studies that examined factors associated with screening decisions in CPS practice settings were included in the review. Database and other search methods were used to identify research published in English over a 35-year period (1980-2015).
Findings: Of 1,147 identified sources, 18 studies were selected for full data extraction. The studies were conducted in the U.S., Canada, and Sweden and varied in methodological quality. Most studies examined case factors with few studies examining other domains.
Conclusions: To inform CPS policy and practice, additional research is needed to examine the relationships between decision-making factors and case outcomes. Greater attention needs to be given to the organizational and external factors that influence decision-making
Manufacture, observation, and test of membranes with locatable single pores
A method for generating single pores down to 0.1 μm diameter in the center of a large circular foil is described, based on nuclear tracks. The foil is framed by a tension ring which enables one to handle the foils in a well‐defined precise way. The single pore has a lateral displacement of ±0.1 mm with respect to the tension ring center. The foils used are polycarbonate of the type Makrofol and have thicknesses between 2 and 10 μm. For calibration of the single pore diameters, multiple nuclear tracks between 0.1 and 3.5 μm diameter are etched and observed by microscopy. The microscopic observations are compared with gas‐flow measurements, using two alternative methods: multiple holes are tested under viscous flow conditions of N2 gas at normal temperature and pressure; single holes are tested under collisionless flow conditions of 4He gas at liquid‐nitrogen temperature, using a capacitance method.Peer reviewe
Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates
The dynamics of vortices in trapped Bose-Einstein condensates are
investigated both analytically and numerically. In axially symmetric traps, the
critical rotation frequency for the metastability of an isolated vortex
coincides with the largest vortex precession frequency (or anomalous mode) in
the Bogoliubov excitation spectrum. As the condensate becomes more elongated,
the number of anomalous modes increases. The largest frequency of these modes
exceeds both the thermodynamic critical frequency and the nucleation frequency
at which vortices are created dynamically. Thus, anomalous modes describe not
only the critical rotation frequency for creation of the first vortex in an
elongated condensate but also the vortex precession in a single-component
spherical condensate.Comment: 4 pages revtex, 3 embedded figure
Critical Networks Exhibit Maximal Information Diversity in Structure-Dynamics Relationships
Network structure strongly constrains the range of dynamic behaviors
available to a complex system. These system dynamics can be classified based on
their response to perturbations over time into two distinct regimes, ordered or
chaotic, separated by a critical phase transition. Numerous studies have shown
that the most complex dynamics arise near the critical regime. Here we use an
information theoretic approach to study structure-dynamics relationships within
a unified framework and how that these relationships are most diverse in the
critical regime
Nucleation of vortex arrays in rotating anisotropic Bose-Einstein condensates
The nucleation of vortices and the resulting structures of vortex arrays in
dilute, trapped, zero-temperature Bose-Einstein condensates are investigated
numerically. Vortices are generated by rotating a three-dimensional,
anisotropic harmonic atom trap. The condensate ground state is obtained by
propagating the Gross-Pitaevskii equation in imaginary time. Vortices first
appear at a rotation frequency significantly larger than the critical frequency
for vortex stabilization. This is consistent with a critical velocity mechanism
for vortex nucleation. At higher frequencies, the structures of the vortex
arrays are strongly influenced by trap geometry.Comment: 5 pages, two embedded figures. To appear in Phys. Rev. A (RC
Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate
A hydrodynamic description is used to study the normal modes of a vortex in a
zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the
circulating superfluid velocity far from the vortex core provides a small
perturbation that splits the originally degenerate normal modes of a
vortex-free condensate. The relative frequency shifts are small in all cases
considered (they vanish for the lowest dipole mode with |m|=1), suggesting that
the vortex is stable. The Bogoliubov equations serve to verify the existence of
helical waves, similar to those of a vortex line in an unbounded weakly
interacting Bose gas. In the large-condensate (small-core) limit, the
condensate wave function reduces to that of a straight vortex in an unbounded
condensate; the corresponding Bogoliubov equations have no bound-state
solutions that are uniform along the symmetry axis and decay exponentially far
from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We
have altered the material in Secs. 3B and 4 in connection with the normal
modes that have |m|=1. Our present treatment satisfies the condition that the
fundamental dipole mode of a condensate with (or without) a vortex should
have the bare frequency $\omega_\perp
- …
