21,293 research outputs found

    Statistical Mechanics of Relativistic One-Dimensional Self-Gravitating Systems

    Get PDF
    We consider the statistical mechanics of a general relativistic one-dimensional self-gravitating system. The system consists of NN-particles coupled to lineal gravity and can be considered as a model of NN relativistically interacting sheets of uniform mass. The partition function and one-particle distitrubion functions are computed to leading order in 1/c1/c where cc is the speed of light; as cc\to\infty results for the non-relativistic one-dimensional self-gravitating system are recovered. We find that relativistic effects generally cause both position and momentum distribution functions to become more sharply peaked, and that the temperature of a relativistic gas is smaller than its non-relativistic counterpart at the same fixed energy. We consider the large-N limit of our results and compare this to the non-relativistic case.Comment: latex, 60 pages, 22 figure

    New Types of Thermodynamics from (1+1)(1+1)-Dimensional Black Holes

    Full text link
    For normal thermodynamic systems superadditivity §\S, homogeneity \H and concavity \C of the entropy hold, whereas for (3+1)(3+1)-dimensional black holes the latter two properties are violated. We show that (1+1)(1+1)-dimensional black holes exhibit qualitatively new types of thermodynamic behaviour, discussed here for the first time, in which \C always holds, \H is always violated and §\S may or may not be violated, depending of the magnitude of the black hole mass. Hence it is now seen that neither superadditivity nor concavity encapsulate the meaning of the second law in all situations.Comment: WATPHYS-TH93/05, Latex, 10 pgs. 1 figure (available on request), to appear in Class. Quant. Gra

    N-body Gravity and the Schroedinger Equation

    Get PDF
    We consider the problem of the motion of NN bodies in a self-gravitating system in two spacetime dimensions. We point out that this system can be mapped onto the quantum-mechanical problem of an N-body generalization of the problem of the H2+_{2}^{+} molecular ion in one dimension. The canonical gravitational N-body formalism can be extended to include electromagnetic charges. We derive a general algorithm for solving this problem, and show how it reduces to known results for the 2-body and 3-body systems.Comment: 15 pages, Latex, references added, typos corrected, final version that appears in CQ

    Decoherent Histories Quantum Mechanics with One 'Real' Fine-Grained History

    Get PDF
    Decoherent histories quantum theory is reformulated with the assumption that there is one "real" fine-grained history, specified in a preferred complete set of sum-over-histories variables. This real history is described by embedding it in an ensemble of comparable imagined fine-grained histories, not unlike the familiar ensemble of statistical mechanics. These histories are assigned extended probabilities, which can sometimes be negative or greater than one. As we will show, this construction implies that the real history is not completely accessible to experimental or other observational discovery. However, sufficiently and appropriately coarse-grained sets of alternative histories have standard probabilities providing information about the real fine-grained history that can be compared with observation. We recover the probabilities of decoherent histories quantum mechanics for sets of histories that are recorded and therefore decohere. Quantum mechanics can be viewed as a classical stochastic theory of histories with extended probabilities and a well-defined notion of reality common to all decoherent sets of alternative coarse-grained histories.Comment: 11 pages, one figure, expanded discussion and acknowledgment

    Isolated critical point from Lovelock gravity

    Get PDF
    For any K(=2k+1)th-order Lovelock gravity with fine-tuned Lovelock couplings, we demonstrate the existence of a special isolated critical point characterized by non-standard critical exponents in the phase diagram of hyperbolic vacuum black holes. In the Gibbs free energy this corresponds to a place wherefrom two swallowtails emerge, giving rise to two first-order phase transitions between small and large black holes. We believe that this is a first example of a critical point with non-standard critical exponents obtained in a geometric theory of gravity.Comment: 5 pages, 2 figure

    Satellite refrigeration study. Part II TECHNICAL analysis

    Get PDF
    Low temperature refrigeration system for satellite mounted infrared sensor coolin

    Study of a soft lander/support module for Mars missions. Volume 3 - Appendixes Final summary report

    Get PDF
    Soft lander support module for Mars missions - lunar module radar evaluation and vernier phase simulatio

    Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes

    Get PDF
    We consider the thermodynamics of rotating and charged asymptotically de Sitter black holes. Using Hamiltonian perturbation theory techniques, we derive three different first law relations including variations in the cosmological constant, and associated Smarr formulas that are satisfied by such spacetimes. Each first law introduces a different thermodynamic volume conjugate to the cosmological constant. We examine the relation between these thermodynamic volumes and associated geometric volumes in a number of examples, including Kerr-dS black holes in all dimensions and Kerr-Newman-dS black holes in D=4. We also show that the Chong-Cvetic-Lu-Pope solution of D=5 minimal supergravity, analytically continued to positive cosmological constant, describes black hole solutions of the Einstein-Chern-Simons theory and include such charged asymptotically de Sitter black holes in our analysis. In all these examples we find that the particular thermodynamic volume associated with the region between the black hole and cosmological horizons is equal to the naive geometric volume. Isoperimetric inequalities, which hold in the examples considered, are formulated for the different thermodynamic volumes and conjectured to remain valid for all asymptotically de Sitter black holes. In particular, in all examples considered, we find that for fixed volume of the observable universe, the entropy is increased by adding black holes. We conjecture that this is true in general.Comment: 13 pages, no figures v2:includes comments on the Nariai limit and compressibility of the black hole horizon, added reference

    PLoS One

    Get PDF
    corecore