26,688 research outputs found

    Conversion of glassy antiferromagnetic-insulating phase to equilibrium ferromagnetic-metallic phase by devitrification and recrystallization in Al substituted Pr0.5{_{0.5}}Ca0.5_{0.5}MnO3{_3}

    Full text link
    We show that Pr0.5{_{0.5}}Ca0.5_{0.5}MnO3{_3} with 2.5% Al substitution and La0.5{_{0.5}}Ca0.5_{0.5}MnO3{_3} (LCMO) exhibit qualitatively similar and visibly anomalous M-H curves at low temperature. Magnetic field causes a broad first-order but irreversible antiferromagnetic (AF)-insulating (I) to ferromagnetic (FM)-metallic (M) transition in both and gives rise to soft FM state. However, the low temperature equilibrium state of Pr0.5_{0.5}Ca0.5_{0.5}Mn0.975_{0.975}Al0.025_{0.025}O3_3 (PCMAO) is FM-M whereas that of LCMO is AF-I. In both the systems the respective equilibrium phase coexists with the other phase with contrasting order, which is not in equilibrium, and the cooling field can tune the fractions of the coexisting phases. It is shown earlier that the coexisting FM-M phase behaves like `magnetic glass' in LCMO. Here we show from specially designed measurement protocols that the AF-I phase of PCMAO has all the characteristics of magnetic glassy states. It devitrifies on heating and also recrystallizes to equilibrium FM-M phase after annealing. This glass-like AF-I phase also shows similar intriguing feature observed in FM-M magnetic glassy state of LCMO that when the starting coexisting fraction of glass is larger, successive annealing results in larger fraction of equilibrium phase. This similarity between two manganite systems with contrasting magnetic orders of respective glassy and equilibrium phases points toward a possible universality.Comment: Highlights potential of CHUF (Cooling and Heating in Unequal Fields), a new measurement protoco

    3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    Get PDF
    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components

    Supersymmetric analogue of BC_N type rational integrable models with polarized spin reversal operators

    Get PDF
    We derive the exact spectra as well as partition functions for a class of BCNBC_N type of spin Calogero models, whose Hamiltonians are constructed by using supersymmetric analogues of polarized spin reversal operators (SAPSRO). The strong coupling limit of these spin Calogero models yields BCNBC_N type of Polychronakos-Frahm (PF) spin chains with SAPSRO. By applying the freezing trick, we obtain an exact expression for the partition functions of such PF spin chains. We also derive a formula which expresses the partition function of any BCNBC_N type of PF spin chain with SAPSRO in terms of partition functions of several AKA_K type of supersymmetric PF spin chains, where KN1K\leq N-1. Subsequently we show that an extended boson-fermion duality relation is obeyed by the partition functions of the BCNBC_N type of PF chains with SAPSRO. Some spectral properties of these spin chains, like level density distribution and nearest neighbour spacing distribution, are also studied.Comment: 36 pages, 2 figures. arXiv admin note: text overlap with arXiv:1402.275

    Self dual models and mass generation in planar field theory

    Full text link
    We analyse in three space-time dimensions, the connection between abelian self dual vector doublets and their counterparts containing both an explicit mass and a topological mass. Their correspondence is established in the lagrangian formalism using an operator approach as well as a path integral approach. A canonical hamiltonian analysis is presented, which also shows the equivalence with the lagrangian formalism. The implications of our results for bosonisation in three dimensions are discussed.Comment: 15 pages,Revtex, No figures; several changes; revised version to appear in Physical Review

    Time dependent spectral modeling of Markarian 421 during a violent outburst in 2010

    Full text link
    We present the results of extensive modeling of the spectral energy distributions (SEDs) of the closest blazar (z=0.031) Markarian 421 (Mrk 421) during a giant outburst in February 2010. The source underwent rapid flux variations in both X-rays and very high energy (VHE) gamma-rays as it evolved from a low-flux state on 2010 February 13-15 to a high-flux state on 2010 February 17. During this period, the source exhibited significant spectral hardening from X-rays to VHE gamma-rays while exhibiting a "harder when brighter" behavior in these energy bands. We reproduce the broadband SED using a time-dependent multi-zone leptonic jet model with radiation feedback. We find that an injection of the leptonic particle population with a single power-law energy distribution at shock fronts followed by energy losses in an inhomogeneous emission region is suitable for explaining the evolution of Mrk 421 from low- to high-flux state in February 2010. The spectral states are successfully reproduced by a combination of a few key physical parameters, such as the maximum &\& minimum cutoffs and power-law slope of the electron injection energies, magnetic field strength, and bulk Lorentz factor of the emission region. The simulated light curves and spectral evolution of Mrk 421 during this period imply an almost linear correlation between X-ray flux at 1-10 keV energies and VHE gamma-ray flux above 200 GeV, as has been previously exhibited by this source. Through this study, a general trend that has emerged for the role of physical parameters is that, as the flare evolves from a low- to a high-flux state, higher bulk kinetic energy is injected into the system with a harder particle population and a lower magnetic field strength.Comment: 13 pages, 5 figures, accepted for publication in MNRA

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure

    Electrolytic Extraction of Beryllium-oxide from Beryl

    Get PDF
    Beryllium has of late come into prominence because of its immense value as an alloying element in some binary and ternary non-ferrous alloys. The most important use of this metal is in atomic reactors where it acts as a moderator for slowing down fast neutrons. It is obtained from the mineral beryl of which India is one of the principal prod-ucers. An electrolytic method for the extraction of bery-llium-oxide from beryl has been developed at the National Metallurgical Laboratory, which consists in first obtaining the beryllium in solution as a soluble beryllium salt and then electrolyzing this solution between two graphite electrodes in a diaphragm cell. A slurry containing the hydroxide of beryllium is obtained from the cathode comp-artment, which on washing, drying and ignition, gives the oxide

    3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described
    corecore