Asymmetric rotor model with angular-momentum dependent moments of inertia

B. C. Samanta and P. K. Banerjee
Department of Physics, Burdwan University, Burdwan, West Bengal

(Received 12 November 1974)

Abstract

The rotational enorgies of the different positive parity states of eveneven nuclei have been calculated on the basis of the Davydov and Filippov asymmetric rotor model using Sood's formula for the increase of moments of inertia with angular momentum. The results have been compared with experiment and other works.

1. Introduution

Davydov \& Filippov (1958) postulated the existence of triaxial nuclei and calculated the energy spectra and $B(E 2)$ transition probabilities on the basis of the asymmetric rotor model. Although recent theoretical invostigations (Kumar \& Baranager 1968, Gotz 1972) reveal that most of the deformed nuclei in the ground state are symmetric, the fact remains that calculations with the DavydovFilippov model have led to quite impressive agreement with experimental data. Moreover, in some evon-even nuclei the existence of 3^{+}and 5^{+}states does not fit into the picture of axially symmetric rotor. However, if a nucleus is oscillating about axial symmetry with an r.m.s. value γ, one would expect its rotational levels to be very like those of an axially asymmetric rotor with non-axiality parameter γ.

Although the Davydov-Filippov modol gives quite good agreement with low-lying rotational spectra, the energy levels for higher I become somewhat greater than the experimental values. Abecasis \& Hornandez (1972) have applied the variable moment of inortia (VMI) model of Mariscotti et al (1969) to axially asymmetric even-even nuclei. The calculated energy ratios $R_{n}=$ $E\left(n^{+}\right) / E\left(2^{+}\right)$in their AROVMI model agree well with experiment. This has tompted us to introduce the idea of variation of moments of inertia with angular momentum in the asymmetric rotor. In the AROVMI model, moments of inertia not only depend on angular momentum but also on energies of the different states having the same angular momentum. In our formulation moments of inertia are slocly angular-momentum dependent. Thus the two 2^{+}states have different moments of inertia in the AROVMI model while in our formulation they have the same moments of inertia.

2. Calodlation and Results

For a triaxial nucleus the Hamiltonian is

$$
\begin{equation*}
H=\sum_{i=1}^{8} \sum_{i t^{2}}^{2} I_{i}, \tag{l}
\end{equation*}
$$

The principal moments of inortia are

$$
\begin{equation*}
I_{i}=4 B \beta^{2} \sin ^{2} \quad\left(\gamma-\frac{i 2 \pi}{3}\right) \tag{2}
\end{equation*}
$$

where B is the mass parameter and β is the deformation parameter. Due to rentrifugal stretching and the Coriolis antipairing effect \boldsymbol{I}_{i} increases with I. We have used Sood's formula (Sood 1967).

$$
\begin{equation*}
\boldsymbol{I}_{i}=\boldsymbol{I}_{i}{ }^{0} \frac{1+N y I(I+1)}{\mathbf{1}^{1}+(N-1) y I(I+1)}, \tag{3}
\end{equation*}
$$

whore $N=2.85-0.05 I$ and y is some parameter, for the variation of moments of inertia with angular momentum. This formula gives good agreement with experiment for symmetric even-even nuclei. Supposing γ to be fixed, the energy levels for $I=2,3$ and 5 as given by Davydov \& Filippov (1958) will be modifiod as

$$
\begin{align*}
& E_{\boldsymbol{\tau}}\left(2^{\vdash}\right)=\frac{1+10.5 y}{1+16.5 y} \frac{9\left(1 \mp\left(1-(8 / 9) \sin ^{2} 3 \gamma\right)^{1}\right)}{\sin ^{2} 3 \gamma} A, \tag{4}\\
& E\left(3^{+}\right)=\frac{1+20.4 y}{1+32.0 y \sin ^{2} 3 \gamma} A, \tag{5}\\
& E_{\tau}\left(5^{+}\right)=\frac{1+48 y}{1+78 y} \frac{45 \mp 9\left(9-8 \sin ^{2} 3 \gamma\right)^{\mathbf{i}}}{\sin ^{2} 3 \gamma} A, \tag{6}
\end{align*}
$$

where $A=\frac{h^{2}}{4 B \beta^{2}}, \tau=1$ with the minus sign and $\tau=2$ with the positive sign on the right hand side.

Solving eqs. (4) and (5) the parameters γ, y and A have been obtainod as shown in table 1. The onergy ratio R_{n} and the energy $E_{1}\left(5^{+}\right)$have been calculated and compared with experiment and other works. These are given in table 2. The energy ratios calculated on the basis of the Davydov-Filippor model have been taken from Moore \& White (1960). Sources of exporimental data are Lederer (1967), Jett \& Lind (1970), Sayer et al (1970), and Pathak et al (1970).

3. Disoussions

With the same number of parameters as in the AROVMI model, the results fairly agree with experimental findings. Although experimental valuea of

Table 1. Parameters γ, y and A for even-even asymmetric nuclei

Nucloi	$\begin{gathered} \gamma \\ \text { (dogrees) } \end{gathered}$	y	$\underset{(\mathbf{k e V})}{A}$
Mg ${ }^{\text {24 }}$	11.87	2.607×10^{-2}	118.30
Fe^{66}	20.41	3.454×10^{-3}	164.18
Rus ${ }^{102}$	25.55	7.839×10^{-3}	87.00
ld d^{106}	26.47	1.762×10^{-2}	96.60
Dy ${ }^{160}$	11.93	6.006×10^{-4}	19.98
14^{164}	12.89	8.505×10^{-4}	20.76
Er ${ }^{1608}$	12.67	1.357×10^{-3}	18.42
Er^{108}	12.35	9.219×10^{-4}	18.29
$\mathbf{Y} \mathrm{b}^{\mathbf{1 6 8}}$	11.85	1.191×10^{-3}	20.38
W^{184}	13.83	1.428×10^{-3}	24.96
W^{186}	16.03	5.19×10^{-4}	26.32
Os^{192}	25.19	1.131×10^{-3}	36.45
$\mathbf{P} \mathbf{t}^{182}$	30.00	1.528×10^{-3}	52.07
$\mathbf{P t}^{190}$	30.00	9.96×10^{-3}	61.20
	9.73	5.823×10^{-4}	13.62
U^{231}	8.70	8.66×10^{-5}	10.39
Pu^{238}	8.30	4.926×10^{-4}	10.61
Fm^{204}	10.05	1.188×10^{-3}	10.42

Table 2. Values of $E_{1}\left(5^{+}\right)$and R_{n} for even-even asymmetric nuclei. For $\boldsymbol{E}_{\mathbf{1}}\left(5^{+}\right)$ the first row gives the calculated values and the second row, the experimental valuos in keV for each nucleus. For R_{n}, the four rows represent the ARM, the calculated, the experimontal and the AROVMI model values respectively for each nucleus. $\quad R_{4}^{\prime}=E_{2}\left(4^{+}\right) / E_{1}\left(2^{+}\right)$.

	$E_{1}\left(\overline{5}^{+}\right)$	\boldsymbol{R}_{4}	R_{4}^{\prime}	$\boldsymbol{R}_{\text {6 }}$	$\boldsymbol{R}_{\text {B }}$	\boldsymbol{R}_{10}	\boldsymbol{R}_{12}	\boldsymbol{R}_{14}
Mg ${ }^{\mathbf{2 4}}$		3.31	13.58				-	
	3479	2.84	11.65					
		3.01	-					
		-	-					
Fo^{50}	5848		6.24					
		2.96	5.96					
		2.46						
$R \mathbf{n l ~}^{102}$	2688		5.50					
		2.58	5.05					
		2.33	-					
		-	-					
Pd ${ }^{108}$	2709	2.76	5.50					
		2.41	4.81					
		2.40	-					
		-	-					
D) y^{100}	$\begin{aligned} & 1295 \\ & 1290 \end{aligned}$	3.31	13.45	6.88	11.63	17.49	24.37	32.25
		3.28	13.32	6.74	11.22	16.54	22.57	29.15
		3.27	13.32	6.70	11.14	16.46	22.49	28.98
		3.29	13.41	6.77	11.32	16.80	,	-

Table 2-(contd)

	$E_{1}\left(5^{+}\right)$	\boldsymbol{R}_{4}	\boldsymbol{R}_{4}	$\boldsymbol{R}_{\boldsymbol{B}}$	$\boldsymbol{R}_{\text {B }}$	\boldsymbol{R}_{10}	R_{12}	\boldsymbol{R}_{14}
Er ${ }^{104}$		3.30	11.81	6.83	11.50	17.20	23.88	31.51
	1203	3.26	11.66	6.64	10.94	15.96	21.54	27.58
	1197.4	3.28	11.59	6.72	11.21	16.61	22.79	29.54
		3.28	11.55	6.71	11.14	16.44	22.46	29.16
Er ${ }^{100}$		3.30	12.18	6.85				
	1076	3.24	11.94	6.56				
	1074	3.29	11.87	6.77				
		3.25	12.08	6.61				
Er ${ }^{108}$		3.31	12.71	6.86				
	1104	3.26	12.54	6.66				
		3.31	12.48	6.88				
		3.30	12.63	6.80				
$\mathrm{Y} \mathrm{b}^{108}$		3.31	13.62	6.88	11.64	17.50		
	1351	3.25	13.63	6.62	10.89	16.04		
	1304	3.27	13.36	6. 67	11.04	16.37		
		3.29	13.33	6.67	11.04	16.23		
W^{184}		3.29	10.54	6.78				
	1308	3.23	10.32	6.48				
	1287	3.27	10.21	6.73				
		3.28	10.41	6.77				
W^{186}		3.25	8.40	6.69				
	1206	3.23	8.33	6.47				
	-	3.27	-	6.73				
		3.23	-	6.60				
$0 \mathrm{~s}^{192}$		2.83	5.51					
	1280	2.78	5.42					
	-	2.82	... --					
		-	-					
$\mathrm{P} 1^{192}$		2.67	5.67	5.00				
	1798	2.61	5.54	4.80	7.47			
		2.48	-	4.39	6.61			
		-	-	-	-			
Pt^{186}		2.67	5.67					
	1833	2.44	5.13					
	-	2.47	-					
Th ${ }^{228}$		3.32	19.32	6.95				
	840.4	3.30	19.15	6.81				
		3.25	18.99	6.57				
		-	-	-				
U^{234}		3.33	23.74	6.97	11.90			
	1094	3.32	23.71	6.94	11.84			
	1087	3.30	23.45	6.82	11.47			
		-	-	-	-			
$\mathbf{P u}^{238}$		3.33	25.89	6.97	11.92			
	1103	3.30	25.69	6.86	11.56			
	-	3.31	-	6.88	11.65			
	*	-	-	-	-			
Fm ${ }^{264}$		3.32	18.82					
	847	3.26	17.82					
	-	3.36	-					

$E_{1}\left(5^{+}\right)$are available only for a few nuclei, the agreement is quite good. Since the nuclous is asymmetric, centrifugal stretching occurs in all directions and so the shape of the nucleus remains approximately unchanged and the value of γ remains constant. With the increase of angular momentum the product $B \beta^{2}$ increases. The increase of β with I is due to contrigfugal stretching while the increase of the mass parameter B is due to the Coriolis antipairing (CAP) offect. Pairing gives extra linding to the nucleus which effoctively decreases tho mass and so the moments of inertia. Antipairing on the other hand would lead to increase of moments of inertia. In tho Davydov-Filippov model the values of γ as well as $B \beta^{2}$ do not change with I but here although γ romains unchanged, the value of $B \beta^{2}$ increases with 1 . Simultaneous parametrization of rotational bands built on the ground stato and the γ-vibrational state has also been achievod in our formulation.

Refmeznoes

Abecasis S. M. \& Hernandez, L. S. 1972 Nucl. Phys. A180, 485.
Davydov A. S. \& Filippov G. S. 1958 Nucl Phys. 8, 237.
Götz U., Pauli H. C. Aldor K. \& Junker K. 1972 Nucl. Phys. A192, 1.
Jett J. H. \& I.ind D. A. 1970 Nucl. Phys. A155, 182.
Kumar K. \& Barangor M. 1968 Nucl. Phys. A110, 529.
Lederor C. M., Hollander J. M. \& Porlman I. 1967 Table of Isotopes, sixth ed. (Wiley, New York). Marisootti M. A. J., Schariff-Goldhaber G. \& Buck B. 1969 Phys. Rev. 178, 1804.
Mooro R. B. \& White W. 1960 Can. J. Phys. 38, 1149.
Pathak B. P., Murthi K. S. N., Mukherjee S. K. \& Gujrathi S. C. 1970 Phys. Rev. C1, 1477.
Sayor R. O., Stelson P. H., MeGowan F. K.. Milner W. 'T. \& Robineon R. L. 1970 Phys. Rev.
Cl, 1525.
Sood P. C. 1967 Phys. Rev. 161, 1063.

