1,170 research outputs found
Ultrafast demagnetization in the sp-d model: a theoretical study
We propose and analyze a theoretical model of ultrafast light-induced
magnetization dynamics in systems of localized spins that are coupled to
carriers' spins by sp-d exchange interaction. A prominent example of a class of
materials falling into this category are ferromagnetic (III,Mn)V
semiconductors, in which ultrafast demagnetization has been recently observed.
In the proposed model light excitation heats up the population of carriers,
taking it out of equilibrium with the localized spins. This triggers the
process of energy and angular momentum exchange between the two spin systems,
which lasts for the duration of the energy relaxation of the carriers. We
derive the Master equation for the density matrix of a localized spin
interacting with the hot carriers and couple it with a phenomenological
treatment of the carrier dynamics. We develop a general theory within the sp-d
model and we apply it to the ferromagnetic semiconductors, taking into account
the valence band structure of these materials. We show that the fast spin
relaxation of the carriers can sustain the flow of polarization between the
localized and itinerant spins leading to significant demagnetization of the
localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure
Coherent population trapping in ruby crystal at room temperature
Observation of coherent population trapping (CPT) at ground-state Zeeman
sublevels of -ion in ruby is reported. The experiments are performed
at room temperature by using both nanosecond optical pulses and nanosecond
trains of ultrashort pulses. In both cases sharp drops in the resonantly
induced fluorescence are detected as the external magnetic field is varied.
Theoretical analysis of CPT in a transient regime due to pulsed action of
optical pulses is presented.Comment: 4 pages, 4 figures, submitted to PR
Anharmonic Decay of Vibrational States in Amorphous Silicon
Anharmonic decay rates are calculated for a realistic atomic model of
amorphous silicon. The results show that the vibrational states decay on
picosecond timescales and follow the two-mode density of states, similar to
crystalline silicon, but somewhat faster. Surprisingly little change occurs for
localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure
Destruction of long-range antiferromagnetic order by hole doping
We study the renormalization of the staggered magnetization of a
two-dimensional antiferromagnet as a function of hole doping, in the framework
of the t-J model. It is shown that the motion of holes generates decay of spin
waves into ''particle-hole'' pairs, which causes the destruction of the
long-range magnetic order at a small hole concentration. This effect is mainly
determined by the coherent motion of holes. The value obtained for the critical
hole concentration, of a few percent, is consistent with experimental data for
the doped copper oxide high-Tc superconductors.Comment: 12 pages, 2 figure
Choreography, controversy and child sex abuse: Theoretical reflections on a cultural criminological analysis of dance in a pop music video
This article was inspired by the controversy over claims of ‘pedophilia!!!!’ undertones and the ‘triggering’ of memories of childhood sexual abuse in some viewers by the dance performance featured in the music video for Sia’s ‘Elastic Heart’ (2015). The case is presented for acknowledging the hidden and/or overlooked presence of dance in social scientific theory and cultural studies and how these can enhance and advance cultural criminological research. Examples of how these insights have been used within other disciplinary frameworks to analyse and address child sex crime and sexual trauma are provided, and the argument is made that popular cultural texts such as dance in pop music videos should be regarded as significant in analysing and tracing public perceptions and epistemologies of crimes such as child sex abuse
Entangled Rings
Consider a ring of N qubits in a translationally invariant quantum state. We
ask to what extent each pair of nearest neighbors can be entangled. Under
certain assumptions about the form of the state, we find a formula for the
maximum possible nearest-neighbor entanglement. We then compare this maximum
with the entanglement achieved by the ground state of an antiferromagnetic ring
consisting of an even number of spin-1/2 particles. We find that, though the
antiferromagnetic ground state does not maximize the nearest-neighbor
entanglement relative to all other states, it does so relative to other states
having zero z-component of spin.Comment: 19 pages, no figures; v2 includes new results; v3 corrects a
numerical error for the case N=
Magnetic Properties of Weakly Doped Antiferromagnets
We study the spin excitations and the transverse susceptibility of a
two-dimensional antiferromagnet doped with a small concentration of holes in
the t-J model. The motion of holes generates a renormalization of the magnetic
properties. The Green's functions are calculated in the self-consistent Born
approximation. It is shown that the long-wavelength spin waves are
significantly softened and the shorter-wavelength spin waves become strongly
damped as the doping increases. The spin wave velocity is reduced by the
coherent motion of holes, and not increased as has been claimed elsewhere. The
transverse susceptibility is found to increase considerably with doping, also
as a result of coherent hole motion. Our results are in agreement with
experimental data for the doped copper oxide superconductors.Comment: 20 page
Between feminism and anorexia: An autoethnography
Critical feminist work on eating disorders has grown substantially since its establishment in the 1980s, and has increasingly incorporated the use of anorexic stories, voices and experiences. Yet rarely do such accounts offer the anorexic a space to respond to the now established feminist conceptions of the problem which structure the books or articles in which they appear. Anorexic, or recovered anorexic, voices are used by the researcher to interpret the role played by gender, even whilst the subjects are invited to respond to and critique, medical and popular discourses on the disorder. This lack of dialogue is all the more striking in the context of the feminist aim to fight ‘back against the tendency to silence anorexic women’s’ own interpretations of their starving, treatment and construction (Saukko, 2008: 34). As someone who suffered from anorexia for 20 years, this article offers an autoethnographic account of my experience of encountering the feminist literature on anorexia in a bid to speak back, or enter into a dialogue between feminist politics and eating disorder experience
Fracton pairing mechanism for "strange" superconductors: Self-assembling organic polymers and copper-oxide compounds
Self-assembling organic polymers and copper-oxide compounds are two classes
of "strange" superconductors, whose challenging behavior does not comply with
the traditional picture of Bardeen, Cooper, and Schrieffer (BCS)
superconductivity in regular crystals. In this paper, we propose a theoretical
model that accounts for the strange superconducting properties of either class
of the materials. These properties are considered as interconnected
manifestations of the same phenomenon: We argue that superconductivity occurs
in the both cases because the charge carriers (i.e., electrons or holes)
exchange {\it fracton excitations}, quantum oscillations of fractal lattices
that mimic the complex microscopic organization of the strange superconductors.
For the copper oxides, the superconducting transition temperature as
predicted by the fracton mechanism is of the order of K. We suggest
that the marginal ingredient of the high-temperature superconducting phase is
provided by fracton coupled holes that condensate in the conducting
copper-oxygen planes owing to the intrinsic field-effect-transistor
configuration of the cuprate compounds. For the gate-induced superconducting
phase in the electron-doped polymers, we simultaneously find a rather modest
transition temperature of K owing to the limitations imposed by
the electron tunneling processes on a fractal geometry. We speculate that
hole-type superconductivity observes larger onset temperatures when compared to
its electron-type counterpart. This promises an intriguing possibility of the
high-temperature superconducting states in hole-doped complex materials. A
specific prediction of the present study is universality of ac conduction for
.Comment: 12 pages (including separate abstract page), no figure
High frequency sound waves in vitreous silica
We report a molecular dynamics simulation study of the sound waves in
vitreous silica in the mesoscopic exchanged momentum range. The calculated
dynamical structure factors are in quantitative agreement with recent
experimental inelastic neutron and x-ray scattering data. The analysis of the
longitudinal and transverse current spectra allows to discriminate between
opposite interpretations of the existing experimental data in favour of the
propagating nature of the high frequency sound waves.Comment: 4 pages, Revtex, 4 ps figures; to be published in Phys. Rev. Lett.,
February 198
- …
