464 research outputs found

    Ehrenfest Dynamics and Frictionless Cooling Methods

    Full text link
    Recently introduced methods which result in shortcuts to adiabaticity, particularly in the context of frictionless cooling, are rederived and discussed in the framework of an approach based on Ehrenfest dynamics. This construction provides physical insights into the emergence of the Ermakov equation, the choice of its boundary conditions, and the use of minimum uncertainty states as indicators of the efficiency of the procedure. Additionally, it facilitates the extension of frictionless cooling to more general situations of physical relevance, such as optical dipole trapping schemes. In this context, we discuss frictionless cooling in the short-time limit, a complementary case to the one considered in the literature, making explicit the limitations intrinsic to the technique when the full three-dimensional case is analyzed.Comment: 9 pages, 4 figures, v2: To appear in Physical Review A. (some minor typos corrected and some references added

    Squeezing and robustness of frictionless cooling strategies

    Full text link
    Quantum control strategies that provide shortcuts to adiabaticity are increasingly considered in various contexts including atomic cooling. Recent studies have emphasized practical issues in order to reduce the gap between the idealized models and actual ongoing implementations. We rephrase here the cooling features in terms of a peculiar squeezing effect, and use it to parametrize the robustness of frictionless cooling techniques with respect to noise-induced deviations from the ideal time-dependent trajectory for the trapping frequency. We finally discuss qualitative issues for the experimental implementation of this scheme using bichromatic optical traps and lattices, which seem especially suitable for cooling Fermi-Bose mixtures and for investigating equilibration of negative temperature states, respectively.Comment: 9 pages, 7 figures; To appear in Physical Review

    Detectability of dissipative motion in quantum vacuum via superradiance

    Get PDF
    We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio-frequency signal temporally distinguishable from the expected background.Comment: 4 pages, 2 figure

    Equilibrium states of a test particle coupled to finite size heat baths

    Get PDF
    We report on numerical simulations of the dynamics of a test particle coupled to competing Boltzmann heat baths of finite size. After discussing some features of the single bath case, we show that the presence of two heat baths further constraints the conditions necessary for the test particle to thermalize with the heat baths. We find that thermalization is a spectral property in which the oscillators of the bath with frequencies in the range of the test particle characteristic frequency determine its degree of thermalization. We also find an unexpected frequency shift of the test particle response with respect to the spectra of the two heat baths. Finally, we discuss implications of our results for the study of high-frequency nanomechanical resonators through cold damping cooling techniques, and for engineering reservoirs capable of mitigating the back-action on a mechanical system.Comment: Strongly related to arXiV:0810.3251 (appeared in European Physical Journal B 61, 271 (2008

    Sympathetic cooling route to Bose-Einstein condensate and Fermi-liquid mixtures

    Get PDF
    We discuss a sympathetic cooling strategy that can successfully mitigate fermion-hole heating in a dilute atomic Fermi-Bose mixture and access the temperature regime in which the fermions behave as a Fermi liquid. We introduce an energy-based formalism to describe the temperature dynamics with which we study a specific and promising mixture composed of 6Li and 87Rb. Analyzing the harmonically trapped mixture, we find that the favourable features of this mixture are further enhanced by using different trapping frequencies for the two species.Comment: 4 pages, 2 figure

    Exact Casimir interaction between eccentric cylinders

    Get PDF
    The Casimir force is the ultimate background in ongoing searches of extra-gravitational forces in the micrometer range. Eccentric cylinders offer favorable experimental conditions for such measurements as spurious gravitational and electrostatic effects can be minimized. Here we report on the evaluation of the exact Casimir interaction between perfectly conducting eccentric cylinders using a mode summation technique, and study different limiting cases of relevance for Casimir force measurements, with potential implications for the understanding of mechanical properties of nanotubes.Comment: 5 pages, 4 figure

    Uncertainty-principle noise in vacuum-tunneling transducers

    Full text link
    The fundamental sources of noise in a vacuum-tunneling probe used as an electromechanical transducer to monitor the location of a test mass are examined using a first-quantization formalism. We show that a tunneling transducer enforces the Heisenberg uncertainty principle for the position and momentum of a test mass monitored by the transducer through the presence of two sources of noise: the shot noise of the tunneling current and the momentum fluctuations transferred by the tunneling electrons to the test mass. We analyze a number of cases including symmetric and asymmetric rectangular potential barriers and a barrier in which there is a constant electric field. Practical configurations for reaching the quantum limit in measurements of the position of macroscopic bodies with such a class of transducers are studied

    Development of an apparatus for cooling 6Li-87Rb Fermi-Bose mixtures in a light-assisted magnetic trap

    Full text link
    We describe an experimental setup designed to produce ultracold trapped gas clouds of fermionic 6Li and bosonic 87Rb. This combination of alkali metals has the potential to reach deeper Fermi degeneracy with respect to other mixtures since it allows for improved heat capacity matching which optimizes sympathetic cooling efficiency. Atomic beams of the two species are independently produced and then decelerated by Zeeman slowers. The slowed atoms are collected into a magneto-optical trap and then transferred into a quadrupole magnetic trap. An ultracold Fermi gas with temperature in the 10^-3 T_F range should be attainable through selective confinement of the two species via a properly detuned laser beam focused in the center of the magnetic trap.Comment: Presented at LPHYS'06, 8 figure

    Impulsive quantum measurements: restricted path integral versus von Neumann collapse

    Full text link
    The relation between the restricted path integral approach to quantum measurement theory and the commonly accepted von Neumann wavefunction collapse postulate is presented. It is argued that in the limit of impulsive measurements the two approaches lead to the same predictions. The example of repeated impulsive quantum measurements of position performed on a harmonic oscillator is discussed in detail and the quantum nondemolition strategies are recovered in both the approaches.Comment: 12 pages, 3 figure

    Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry

    Get PDF
    We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force.Comment: 4 pages, 4 figure
    • …
    corecore