1,636 research outputs found
Correlated Emission of Hadrons from Recombination of Correlated Partons
We discuss different sources of hadron correlations in relativistic heavy ion
collisions. We show that correlations among partons in a quasi-thermal medium
can lead to the correlated emission of hadrons by quark recombination and argue
that this mechanism offers a plausible explanation for the dihadron
correlations in the few GeV/c momentum range observed in Au+Au collisions at
RHIC.Comment: 4 pages, 2 figures; v2: typo on p.4 correcte
A model of semimetallic behavior in strongly correlated electron systems
Metals with values of the resistivity and the Hall coefficient much larger
than typical ones, e.g., of sodium, are called semimetals. We suggest a model
for semimetals which takes into account the strong Coulomb repulsion of the
charge carriers, especially important in transition-metal and rare-earth
compounds. For that purpose we extend the Hubbard model by coupling one
additional orbital per site via hybridization to the Hubbard orbitals. We
calculate the spectral function, resistivity and Hall coefficient of the model
using dynamical mean-field theory. Starting from the Mott-insulating state, we
find a transition to a metal with increasing hybridization strength
(``self-doping''). In the metallic regime near the transition line to the
insulator the model shows semimetallic behavior. We compare the calculated
temperature dependence of the resistivity and the Hall coefficient with the one
found experimentally for . The comparison demonstrates that the
anomalies in the transport properties of possibly can be
assigned to Coulomb interaction effects of the charge carriers not captured by
standard band structure calculations.Comment: 9 pages RevTeX with 7 ps figures, accepted by PR
Photonic analog of graphene model and its extension -- Dirac cone, symmetry, and edge states --
This paper presents a theoretical analysis on bulk and edge states in
honeycomb lattice photonic crystals with and without time-reversal and/or
space-inversion symmetries. Multiple Dirac cones are found in the photonic band
structure and the mass gaps are controllable via symmetry breaking. The zigzag
and armchair edges of the photonic crystals can support novel edge states that
reflect the symmetries of the photonic crystals. The dispersion relation and
the field configuration of the edge states are analyzed in detail in comparison
to electronic edge states. Leakage of the edge states to free space is inherent
in photonic systems and is fully taken into account in the analysis. A
topological relation between bulk and edge, which is analogous to that found in
quantum Hall systems, is also verified.Comment: 9 pages, 7 figure
Cronin Effect in Hadron Production off Nuclei
Recent data from RHIC for high- hadrons in gold-gold collisions raised
again the long standing problem of quantitatively understanding the Cronin
effect, i.e. nuclear enhancement of high- hadrons due to multiple
interactions in nuclear matter. In nucleus-nucleus collisions this effect has
to be reliably calculated as baseline for a signal of new physics in high-
hadron production. The only possibility to test models is to compare with
available data for collisions, however, all existing models for the Cronin
effect rely on a fit to the data to be explained. We develop a phenomenological
description based on the light-cone QCD-dipole approach which allows to explain
available data without fitting to them and to provide predictions for
collisions at RHIC and LHC. We point out that the mechanism causing Cronin
effect drastically changes between the energies of fixed target experiments and
RHIC-LHC. High- hadrons are produced incoherently on different nucleons at
low energies, whereas the production amplitudes interfere if the energy is
sufficiently high.Comment: the final version to appear in Phys. Rev. Let
Stability of the compressible quantum Hall state around the half-filled Landau level
We study the compressible states in the quantum Hall system using a mean
field theory on the von Neumann lattice. In the lowest Landau level, a kinetic
energy is generated dynamically from Coulomb interaction. The compressibility
of the state is calculated as a function of the filling factor and the
width of the spacer between the charge carrier layer and dopants. The
compressibility becomes negative below a critical value of and the state
becomes unstable at . Within a finite range around , the
stable compressible state exists above the critical value of .Comment: 4 pages, 4 Postscript figures, RevTe
Phenomenology of a light scalar: the dilaton
We make use of the language of non-linear realizations to analyze
electro-weak symmetry breaking scenarios in which a light dilaton emerges from
the breaking of a nearly conformal strong dynamics, and compare the
phenomenology of the dilaton to that of the well motivated light composite
Higgs scenario. We argue that -- in addition to departures in the
decay/production rates into massless gauge bosons mediated by the conformal
anomaly -- characterizing features of the light dilaton scenario (as well as
other scenarios admitting a light CP-even scalar not directly related to the
breaking of the electro-weak symmetry) are off-shell events at high invariant
mass involving two longitudinally polarized vector bosons and a dilaton, and
tree-level flavor violating processes. Accommodating both electro-weak
precision measurements and flavor constraints appears especially challenging in
the ambiguous scenario in which the Higgs and the dilaton fields strongly mix.
We show that warped higgsless models of electro-weak symmetry breaking are
explicit and tractable realizations of this limiting case.
The relation between the naive radion profile often adopted in the study of
holographic realizations of the light dilaton scenario and the actual dynamical
dilaton field is clarified in the Appendix.Comment: 21 page
Modular symbols in Iwasawa theory
This survey paper is focused on a connection between the geometry of
and the arithmetic of over global fields,
for integers . For over , there is an explicit
conjecture of the third author relating the geometry of modular curves and the
arithmetic of cyclotomic fields, and it is proven in many instances by the work
of the first two authors. The paper is divided into three parts: in the first,
we explain the conjecture of the third author and the main result of the first
two authors on it. In the second, we explain an analogous conjecture and result
for over . In the third, we pose questions for general
over the rationals, imaginary quadratic fields, and global function fields.Comment: 43 page
Reentrant charge ordering caused by polaron formation
Based on a two-dimensional extended Hubbard model with electron-phonon
interaction, we have studied the effect of polaron formation on the charge
ordering (CO) transition. It is found that for fully ferromagnetically ordered
spins the CO state may go through a process of appearance, collapse and
reappearance with decreasing temperature. This is entirely due to a
emperature-dependent polaron bandwidth. On the other hand, when a paramagnetic
spin state is considered, only a simple reentrant behavior of the CO transition
is found, which is only partly due to polaron effect. This model is proposed as
an explanation of the observed reentrant behavior of the CO transition in the
layered manganite LaSrMnO.Comment: 4 pages, 2 eps figures, revised version accepted by Phys. Rev. Let
cDNA microarray analysis of bovine embryo gene expression profiles during the pre-implantation period
BACKGROUND: After fertilization, embryo development involves differentiation, as well as development of the fetal body and extra-embryonic tissues until the moment of implantation. During this period various cellular and molecular changes take place with a genetic origin, e.g. the elongation of embryonic tissues, cell-cell contact between the mother and the embryo and placentation. To identify genetic profiles and search for new candidate molecules involved during this period, embryonic gene expression was analyzed with a custom designed utero-placental complementary DNA (cDNA) microarray. METHODS: Bovine embryos on days 7, 14 and 21, extra-embryonic membranes on day 28 and fetuses on days 28 were collected to represent early embryo, elongating embryo, pre-implantation embryo, post-implantation extra-embryonic membrane and fetus, respectively. Gene expression at these different time points was analyzed using our cDNA microarray. Two clustering algorithms such as k-means and hierarchical clustering methods identified the expression patterns of differentially expressed genes across pre-implantation period. Novel candidate genes were confirmed by real-time RT-PCR. RESULTS: In total, 1,773 individual genes were analyzed by complete k-means clustering. Comparison of day 7 and day 14 revealed most genes increased during this period, and a small number of genes exhibiting altered expression decreased as gestation progressed. Clustering analysis demonstrated that trophoblast-cell-specific molecules such as placental lactogens (PLs), prolactin-related proteins (PRPs), interferon-tau, and adhesion molecules apparently all play pivotal roles in the preparation needed for implantation, since their expression was remarkably enhanced during the pre-implantation period. The hierarchical clustering analysis and RT-PCR data revealed new functional roles for certain known genes (dickkopf-1, NPM, etc) as well as novel candidate genes (AW464053, AW465434, AW462349, AW485575) related to already established trophoblast-specific genes such as PLs and PRPs. CONCLUSIONS: A large number of genes in extra-embryonic membrane increased up to implantation and these profiles provide information fundamental to an understanding of extra-embryonic membrane differentiation and development. Genes in significant expression suggest novel molecules in trophoblast differentiation
- …