11,988 research outputs found

    A point mass in an isotropic universe: III. The region R2mR\leq 2m

    Full text link
    McVittie's solution of Einstein's field equations, representing a point mass embedded into an isotropic universe, possesses a scalar curvature singularity at proper radius R=2mR=2m. The singularity is space-like and precedes, in the expanding case, all other events in the space-time. It is shown here that this singularity is gravitationally weak, and the possible structure of the region R2mR\leq 2m is investigated. A characterization of this solution which does not involve asymptotics is given.Comment: Revtex, 11pp. To appear in Class.Quant.Grav. Paper II appeared as Class. Quant. Grav. 16 (1999) 122

    Spectral determinations for discrete sources with EGRET

    Get PDF
    The ability of the EGRET (Energetic Gamma-Ray Experimental Telescope) to determine the spectral parameters of point sources in 14-day exposures, as planned for the initial survey phase of the GRO (Gamma Ray Observatory) mission, is explored by numerical simulation. Results are given for both galactic and extragalactic objects as a function of source strength and for representative levels of diffuse background emission

    Expansion-induced contribution to the precession of binary orbits

    Get PDF
    We point out the existence of new effects of global spacetime expansion on local binary systems. In addition to a possible change of orbital size, there is a contribution to the precession of elliptic orbits, to be added to the well-known general relativistic effect in static spacetimes, and the eccentricity can change. Our model calculations are done using geodesics in a McVittie metric, representing a localized system in an asymptotically Robertson-Walker spacetime; we give a few numerical estimates for that case, and indicate ways in which the model should be improved.Comment: revtex, 7 pages, no figures; revised for publication in Classical and Quantum Gravity, with minor changes in response to referees' comment

    CCD photometry of 2060 Chiron, 1991 January

    Get PDF
    Observations of 2060 Chiron was performed on 7 to 8 Jan. 1991 with the Mt. Palomar 1.52 m telescope in the Gunn-R passband. On-chip field stars were used to perform differential reductions. The repeatability of the 5.9 hour light curve was excellent, both within a night and from night to night. No evidence for short-term secular variations similar to those seen last year by both Luu and Jewitt (1990) and Buratti and Dunbar (1991) is seen in the new light curve. Chiron's rotational light curve appears strikingly similar to that obtained a year earlier by Luu and Jewitt (1990), both in amplitude and shape. Both light curves show strongly correlated changes over a timescale of perhaps 15 minutes. These same features were marginally visible in the 1986 light curve. Such behavior is believed to be evidence that Chiron may be more aspherical than the 4 percent intensity variation might otherwise indicate, and favors a viewing geometry where the subearth latitude is rather low. Chiron was much fainter in 1985, when a partial light curve was obtained by Marcialis. Due to the lower sampling rate of these early data, no conclusions can be made regarding the high-frequency light curve structure back then. All three of these light curves differ significantly from that obtained by Buratti and Dunbar (1991), one week before the observations of Luu and Jewitt. The Chiron field was calibrated using Landolt standards on Ut 15 Mar. 1991. A mean R-magnitude of 15.6 + or - 0.1 was found. Variability of 2060 Chiron was demonstrated over timescales of minutes, hours, and years. An intense campaign was urged to monitor the photometric behavior of Chiron throughout the 1990s

    The star-formation histories of elliptical galaxies across the fundamental plane

    Get PDF
    We present the first results from a study designed to test whether, given high-quality spectrophotometry spanning the mid-UV--optical wavelength regime, it is possible to distinguish the metal content (Z) and star-formation history (sfh) of individual elliptical galaxies with sufficient accuracy to establish whether their formation history is linked to their detailed morphology and position on the Fundamental Plane. From a detailed analysis of UV-optical spectrophotometry of the `cuspy' elliptical galaxy NGC 3605 and the giant elliptical NGC 5018 we find that: 1) optical spectra with l > 3500 A may not contain sufficient data to robustly uncover all the stellar populations present in individual galaxies, even in such relatively passive objects as ellipticals, 2) the addition of the UV data approaching l = 2500 A holds the key to establishing well-constrained sfhs, from which we can infer a formation and evolution history which is consistent with their photometric properties, 3) despite the superficial similarity of their spectra, the two galaxies have very different `recent' sfhs -- the smaller, cuspy elliptical NGC 3605 contains a high-Z population of age ~= 1 Gyr, and has a position on the fundamental plane typical of the product of a low-z gas-rich merger (most likely at z ~ 0.08), while the giant elliptical NGC 5018, with a sub-solar secondary population, appears to have gained its more recent stars via mass transfer / accretion of gas from its spiral companion, 4) despite these differences in detailed history, more than 85% of the stellar mass of both galaxies is associated with an old (9-12 Gyr) stellar population of near-solar Z. This pilot study provides strong motivation for the construction and analysis of high-quality UV-optical spectra for a substantial sample of ellipticals spanning the Fundamental Plane.Comment: 11 pages, 10 figures, submitted to MNRAS, revised versio

    Odd-parity perturbations of self-similar Vaidya spacetime

    Get PDF
    We carry out an analytic study of odd-parity perturbations of the self-similar Vaidya space-times that admit a naked singularity. It is found that an initially finite perturbation remains finite at the Cauchy horizon. This holds not only for the gauge invariant metric and matter perturbation, but also for all the gauge invariant perturbed Weyl curvature scalars, including the gravitational radiation scalars. In each case, `finiteness' refers to Sobolev norms of scalar quantities on naturally occurring spacelike hypersurfaces, as well as pointwise values of these quantities.Comment: 28 page
    corecore