540 research outputs found

    Graphene setting the stage: tracking DNA hybridization with nanoscale resolution

    Get PDF
    In this study we use nanophotonic effects of graphene to study DNA hybridization: the z−4 nanoscale distance-dependence of the fluorescence lifetime for fluorophores located in the vicinity of graphene is for the first time used to track a DNA hybridization reaction with nanoscale resolution in real time. First, a nanostaircase with ≈2 nm steps from 0 to a total height of 48 nm is used as a nanoruler to confirm the distance dependence law. We find that the axial sensitivity is suited to determine the nanoscale surface roughness of these samples. The proof-of-concept DNA experiments in aqueous medium involve the hybridization of fluorescently labelled DNA beacons attached to CVD grown graphene with complementary (target) DNA added in solution. We track the conformational changes of the beacons statistically by determining the fluorescence lifetimes of the labelling dye and converting them into nanoscale distances from the graphene. In this way, we are able to monitor the vertical displacement of the label during DNA-beacon unfolding with an axial resolution reaching down to 1 nm. The measured distance increase during the DNA hybridization reaction of about 10 nm matches the length of the target DNA strand. Furthermore, the width of the fluorescence lifetime distributions could be used to estimate the molecular tilt angle of the hybridized ds-DNA configuration. The achieved nanoscale sensitivity opens innovation opportunities in material engineering, genetics, biochemistry and medicine.INL received support for this project from the CCDR-N via the project 'Nanotechnology based functional solutions' (Grant No. NORTE-01-0145-FEDER-000019) and from the Portuguese Foundation for Science and Technology (FCT) via the project 'ON4SupremeSens' PTDC/NAN-OPT/29417/2017. Edite Figueiras received a Marie Curie fellowship via the EU-EC COFUND program 'NanoTRAINforGrowth' (Grant No. 600375). U Minho research was partially supported by the FCT in the framework of the Strategic Funding UID/FIS/04650/2013

    Spectral-temporal luminescence properties of Colloidal CdSe/ZnS Quantum Dots in relevant polymer matrices for integration in low turn-on voltage AC-driven LEDs

    Get PDF
    This work employs spectral and spectral-temporal Photoluminescence (PL) spectroscopy techniques to study the radiative mechanisms in colloidal CdSe/ZnS Quantum Dot (QD) thin films without and with 1% PMMA polymer matrix embedding (QDPMMA). The observed bimodal transient-spectral PL distributions reveal bandgap transitions and radiative recombinations after interdot electron transfer. The PMMA polymer embedding protects the QDs during the plasma-sputtering of inorganic layers electroluminescent (EL) devices, with minimal impact on the charge transfer properties. Further, a novel TiO2-based, all-electron bandgap, AC-driven QLED architecture is fabricated, yielding a surprisingly low turn-on voltage, with PL-identical and narrow-band EL emission. The symmetric TiO2 bilayer architecture is a promising test platform for alternative optical active materials.European Commission, Seventh Framework Programme (600375); European Commission, Horizon 2020 Framework Programme (828841); European Regional Development Fund, INTERREG V-A España-Portugal (POCTEP) 2014-2020 (0181_NANOEATERS_1_EP); CCDR-N (NORTE-01-0145-FEDER-000019); Fundação para a CiĂȘncia e a Tecnologia (UIDB/04650/2020)

    Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October - November 2003

    Get PDF
    We present altitude-dependent lifetimes of NOx, determined with MIPAS/ENVISAT (the Michelson Interferometer for Passive Atmospheric Sounding/the European Environment Satellite), for the Southern polar region after the solar proton event in October–November 2003. Between 50° S and 90° S and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photochemistry. We infer estimates of dynamical lifetimes by comparison of the observed decay to photochemical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 0.1% at 44 km, increasing with altitude to 45% at 64 km. In addition, we show the correlation of modelled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitudedependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements from 15 October–31 December 2003. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.7 NOx-molecules per ion pair at 62 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modelled ionization rates

    On Flavor Symmetry in Lattice Quantum Chromodynamics

    Full text link
    Using a well established method to engineer non abelian symmetries in superstring compactifications, we study the link between the point splitting method of Creutz et al of refs [1,2] for implementing flavor symmetry in lattice QCD; and singularity theory in complex algebraic geometry. We show amongst others that Creutz flavors for naive fermions are intimately related with toric singularities of a class of complex Kahler manifolds that are explicitly built here. In the case of naive fermions of QCD2N_{2N}, Creutz flavors are shown to live at the poles of real 2-spheres and carry quantum charges of the fundamental of [SU(2)]2N[SU(2)]^{2N}. We show moreover that the two Creutz flavors in Karsten-Wilczek model, with Dirac operator in reciprocal space of the form iγ1F1+iγ2F2+iγ3F3+isin⁥αγ4F4i\gamma_1 F_1+i\gamma_2 F_2 + i\gamma_3 F_3+\frac{i}{\sin \alpha}\gamma_4 F_4, are related with the small resolution of conifold singularity that live at sin⁥α=0\sin \alpha =0. Other related features are also studied.Comment: LaTex, 40 pages, 8 figure

    Room-temperature emitters in wafer-scale few-layer hBN by atmospheric pressure CVD

    Get PDF
    Hexagonal boron nitride (hBN) is a two-dimensional, wide band gap semiconductor material suitable for several technologies. 2D hBN appeared as a viable platform to produce bright and optically stable single photon emitters (SPEs) at room temperature, which are in demand for quantum technologies. In this context, one main challenge concerns the upscaling of 2D hBN with uniform spatial and spectral distribution of SPE sources. In this work we optimized the atmospheric-pressure chemical vapor deposition (APCVD) growth and obtained large-area 2D hBN with uniform fluorescence emission properties. We characterized the hBN films by a combination of electron microscopy, Raman and X-ray photoelectron spectroscopy techniques. The extensive characterization revealed few-layer, polycrystalline hBN films (∌3 nm thickness) with balanced stoichiometry and uniformity over 2″ wafer scale. We studied the fluorescence emission properties of the hBN films by multidimensional hyperspectral fluorescence microscopy. We measured simultaneously the spatial position, intensity, and spectral properties of the emitters, which were exposed to continuous illumination over minutes. Three main emission peaks (at 538, 582, and 617 nm) were observed, with associated replica peaks red-shifted by ∌53 nm. A surface emitter density of ∌0.1 emitters/ÎŒm2 was found. A comparative test with pristine hBN nanosheets produced by liquid-phase exfoliation (LPE) was performed, finding that CVD and LPE hBN possess analogous spectral emitter categories in terms of peak position/intensity and density. Overall, the line-shape and wavelength of the emission peaks, as well as the other measured features, are consistent with single-photon emission from hBN. The results indicate that APCVD hBN might proficiently serve as a SPE platform for quantum technologies.We acknowledge the financial support of i) the project “GEMIS – Graphene-enhanced Electro Magnetic Interference Shielding,” with the reference POCI-01-0247-FEDER-045939, co-funded by COMPETE 2020 – Operational Programme for Competitiveness and Internationalization and FCT –Science and Technology Foundation, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); ii) the project "Graphene and novel thin films for super-resolution microscopy and bio-sensing" (PTDC/NAN-OPT/29417/2017) financed by ERDF, through the Competitiveness and Internationalization Operational Program (POCI) by Portugal 2020 and by the Portuguese Foundation for Science and Technology (FCT) with references POCI-01-0145-FEDER-029417 and PTDC/NAN-OPT/29417/2017; iii) the FCT in the framework of the Strategic Funding UIDB/04650/2020. One of the authors (T.Q.) acknowledges the FCT financial support under the Quantum Portugal Initiative Ph.D. scholarship SFRH/BD/150646/2020. We acknowledge the support by the INL AEMIS, Micro- and Nanofabrication, and Nanophotonics and Bioimaging research core facilities

    National Cancer Institute–National Heart, Lung and Blood Institute/Pediatric Blood and Marrow Transplant Consortium First International Consensus Conference on Late Effects After Pediatric Hematopoietic Cell Transplantation: Long-Term Organ Damage and Dysfunction

    Get PDF
    Long-term complications after hematopoietic cell transplantation (HCT) have been studied in detail. Although virtually every organ system can be adversely affected after HCT, the underlying pathophysiology of these late effects remain incompletely understood. This article describes our current understanding of the pathophysiology of late effects involving the gastrointestinal, renal, cardiac, and pulmonary systems, and discusses post-HCT metabolic syndrome studies. Underlying diseases, pretransplantation exposures, transplantation conditioning regimens, graft-versus-host disease, and other treatments contribute to these problems. Because organ systems are interdependent, long-term complications with similar pathophysiologic mechanisms often involve multiple organ systems. Current data suggest that post-HCT organ complications result from cellular damage that leads to a cascade of complex events. The interplay between inflammatory processes and dysregulated cellular repair likely contributes to end-organ fibrosis and dysfunction. Although many long-term problems cannot be prevented, appropriate monitoring can enable detection and organ-preserving medical management at earlier stages. Current management strategies are aimed at minimizing symptoms and optimizing function. There remain significant gaps in our knowledge of the pathophysiology of therapy-related organ toxicities disease after HCT. These gaps can be addressed by closely examining disease biology and identifying those patients at greatest risk for adverse outcomes. In addition, strategies are needed for targeted disease prevention and health promotion efforts for individuals deemed at high risk because of their genetic makeup or specific exposure profile

    Let's Twist Again: General Metrics of G(2) Holonomy from Gauged Supergravity

    Get PDF
    We construct all complete metrics of cohomogeneity one G(2) holonomy with S^3 x S^3 principal orbits from gauged supergravity. Our approach rests on a generalization of the twisting procedure used in this framework. It corresponds to a non-trivial embedding of the special Lagrangian three-cycle wrapped by the D6-branes in the lower dimensional supergravity. There are constraints that neatly reduce the general ansatz to a six functions one. Within this approach, the Hitchin system and the flop transformation are nicely realized in eight dimensional gauged supergravity.Comment: 31 pages, latex; v2: minor changes, references adde
    • 

    corecore