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Long-term complications after hematopoietic cell transplantation (HCT) have been studied in detail.
Although virtually every organ system can be adversely affected after HCT, the underlying pathophysiology
of these late effects remain incompletely understood. This article describes our current understanding of the
pathophysiology of late effects involving the gastrointestinal, renal, cardiac, and pulmonary systems, and
discusses post-HCT metabolic syndrome studies. Underlying diseases, pretransplantation exposures, trans-
plantation conditioning regimens, graft-versus-host disease, and other treatments contribute to these prob-
lems. Because organ systems are interdependent, long-term complications with similar pathophysiologic
mechanisms often involve multiple organ systems. Current data suggest that post-HCTorgan complications
result from cellular damage that leads to a cascade of complex events. The interplay between inflammatory
processes and dysregulated cellular repair likely contributes to end-organ fibrosis and dysfunction. Although
many long-term problems cannot be prevented, appropriate monitoring can enable detection and organ-
preserving medical management at earlier stages. Current management strategies are aimed at minimizing
symptoms and optimizing function. There remain significant gaps in our knowledge of the pathophysiology
of therapy-related organ toxicities disease after HCT. These gaps can be addressed by closely examining
disease biology and identifying those patients at greatest risk for adverse outcomes. In addition, strategies
are needed for targeted disease prevention and health promotion efforts for individuals deemed at high
risk because of their genetic makeup or specific exposure profile.
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INTRODUCTION

The incidence of and risk factors for long-term
complications after hematopoietic cell transplantation
(HCT) have been studied in detail. Virtually every
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organ system can be adversely affected in some way
after HCT, and although much is known
about these potential toxicities, the underlying patho-
physiology of most are incompletely understood.
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Table 1. Potential Clinical Consequences of Iron Overload in
HCT Survivors, Based on Data from Studies of Iron Burden in
Nontransplantation Populations

Organ Involved Potential Consequences References

Heart Cardiac failure, arrhythmias, death [1-13]
Pituitary Hypogonadism, delayed puberty,

growth hormone deficiency
[14-16]

Thyroid Hypothyroidism [14,15]
Pancreas Insulin-dependent diabetes mellitus [14,17-20]
Brain Neurocognitive defects [21,22]
Secondary malignancy Solid tumor development [23-26]
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In April 2011, a National Cancer Institute (NCI)-
and National Heart, Lung and Blood Institute
(NHLBI)-Pediatric Blood and Marrow Transplant
Consortium (PBMTC)-sponsored consensus confer-
ence of international experts in clinical and biological
research into late effects afterHCTconvened to review
the state of the science of pediatric studies and identify
key areas for future research. This article presents the
conclusions shared at that conference relating to the
pathophysiology of late effects involving the gastroin-
testinal (GI), renal, cardiac, metabolic, and pulmonary
systems.Underlying diseases, pretransplantation expo-
sures, transplantation conditioning regimens, graft-
versus-host disease (GVHD), and other treatments all
contribute to these problems. No organ system func-
tions independently, and thus long-term complications
are usually interrelated and only rarely limited to a
single system.

Iron Overload

Secondary iron overload is a nearly universal com-
plication of HCT. The most troublesome complica-
tions of iron overload are not hepatic-related, but
rather cardiac-, pancreatic-, pituitary-, and thyroid-
related. It develops from repeated red blood cell trans-
fusions and increased GI iron absorption in the setting
of ineffective erythropoiesis and inflammatory condi-
tions, including GVHD [1]. Patients undergoing
transplantation for chronic anemia or protracted
hematologic malignancy may have a substantial iron
burden [2,3]. Iron overload after transplantation for
hematologic malignancy is very common, ranging
from 1832 to 13,120 g/g dry weight (measured
biochemically) before day 100 post-HCT [4]. The
effects of iron overload on morbidity in transplanta-
tion survivors have not been fully investigated,
although one study evaluated these effects in patients
undergoing HCT for thalassemia [5].

Recent studies using serum ferritin as a marker
suggest that iron levels fall slowly over time after trans-
plantation, reaching normal levels only years later
[6,7]. Humans cannot excrete excess iron; iron
mobilization and removal is needed to accelerate this
process, given that prolonged iron excess can lead to
excessive morbidity [8]. Phlebotomy can mobilize
iron from overloaded tissues if the patient has recov-
ered normal erythropoiesis [9]. In a patient with heavy
iron overload, iron reduction therapy may improve
transplantation outcome [10] and cardiac function
[5], but little data are available on transplantation sur-
vivors with underlying diseases other than thalassemia.
Table 1 summarizes the literature addressing the
adverse health outcomes from excessive body iron.

To date, application of iron-specific magnetic res-
onance imaging (MRI) to the study of transplantation
survivors is lacking. Risk factor analysis of survivors
with iron burden as a cofactor have not yet been carried
out with regard to cardiac events, growth and
development, gonadal development, fertility, endo-
crine dysfunction, fibrotic liver disease, and secondary
malignancy. The threshold of cardiac iron concentra-
tion for cardiac events is unknown. The most impor-
tant recent development has been standardization of
the T*2-weighted MRI technique for quantifying
tissue iron.Thismethodologywillprovidea foundation
for future studies of transplantation survivors. Using
T*2-weighted MRI, epidemiologic studies of various
designs (prospective, cross-sectional, and disease-
specific) are urgently needed to better understand the
role of iron overload on long-term transplantation out-
comes. Intervention studies should then follow.

GI, Hepatobiliary, and Pancreatic Dysfunction

Gut symptoms in the years after HCT are usually
a continuation of problems occurring during the first
year (eg, protracted acute GVHD, chronic GVHD,
medication side effects, infection related to immune
suppression).The frequency and severity of these prob-
lems wanes with time, but new problems involving the
gut and livermay arise decades later.Table 2 lists symp-
toms and causes of GI problems associated with HCT.

Themajority of GI late effects are GVHD-related.
Unfortunately, the significant current knowledge gaps
include the mystery of why some patients fail to
develop graft tolerance and why others suffer from re-
fractory chronic GVHD. Current research on GVHD
biomarkers may help identify flares, enabling preemp-
tive therapy. Areas of future focus should include
acceleration of immune reconstitution, development
of tolerance, and discovery of markers of incipient
GVHD. New therapies for protracted acute and
chronic GVHD are urgently needed.

Chronic Kidney Disease

Chronic kidney disease (CKD) is frequently diag-
nosed after HCT. Of the multiple clinical forms of
CKD, the most commonly described are thrombotic
microangiopathy, nephrotic syndrome, calcineurin
inhibitor toxicity, acute kidney injury, and GVHD-
related CKD. Various risk factors associated with the
development of CKD have been described; however,
some recent studies have suggested that GVHD also
maybe aproximal causeof renal injury, as discussed later.



Table 2. Causes of GI, Hepatobiliary, and Pancreatic Problems in Long-Term HCT Survivors

Problem Areas Common Causes Less Common Causes

Esophageal symptoms [27-32]
� Heartburn
� Dysphagia
� Painful swallowing

� Oral chronic GVHD (mucosal changes,
poor dentition, xerostomia)

� Reflux of gastric fluid

� Chronic GVHD of the esophagus (webs, rings,
submucosal fibrosis, and strictures, aperistalsis)

� Hypopharnngeal dysmotility (myasthenia gravis,
cricopharyngeal incoordination)

� Squamous > adenocarcinoma
� Pill esophagitis
� Infection (fungal, viral)

Upper gut symptoms: anorexia,
nausea, vomiting [33-37]

� Protracted acute GI GVHD
� Activation of latent infection (CMV, HSV, VZV)
� Medication adverse effects

� Secondary adrenal insufficiency
� Acquisition of infection (enteric viruses, giardia,
cryptosporidia, Haemophilus pylori)

� Gut dysmotility
Mid-gut and colonic symptoms:

diarrhea and abdominal pain [38,39]
� Protracted acute GI GVHD
� Activation of latent CMV, VZV
� Drugs (eg, mycophenolate mofetil, Mg++, antibiotics)

� Acquisition of infection (enteric viruses, bacteria,
parasites)

� Pancreatic insufficiency
� Clostridium difficile colitis
� Collagen-encased bowel (GVHD)
� Rare: inflammatory bowel disease, sprue [39]; bile salt

malabsorption; disaccharide malabsorption
Liver problems [40-50] � Cholestatic GVHD

� Chronic viral hepatitis (B and C)
� Cirrhosis
� Focal nodular hyperplasia
� Nonspecific elevation of liver enzymes in serum

(AP, ALT, GGT)

� Hepatitic GVHD
� VZV or HSV hepatitis
� Fungal abscess
� Nodular regenerative hyperplasia (NRH)
� Biliary obstruction
� Drug-induced liver injury

Biliary and pancreatic problems [51-54] � Cholecystitis
� Common duct stones/sludge
� Gall bladder sludge (calcium bilirubinate)
� Gallstones

� Pancreatic atrophy/insufficiency
� Pancreatitis/edema, stone- or sludge-related
� Pancreatitis, tacrolimus-related

AP indicates alkaline phosphatase; ALT, alanine transaminase; CMV, cytomegalovirus; GGT, gamma glutamyl transpeptidase; HSV, herpes simplex virus;
VZV, varicella zoster virus.
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Figure 1. Proposed conceptual representation of pathogenesis of
CKD in HCT recipients. aGVHD, acute GVHD; cGVHD, chronic
GVHD; HTN, hypertension.From Hingorani S. Kidney and bladder
complications of hematopoietic cell transplantation. In: Thomas ED,
Appelbaum FR, Forman SG, et al., editors. Hematopoietic Cell Transplan-
tation. 4th ed. Hoboken, NJ: Wiley-Blackwell; 2009. p. 1473.
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A systematic review of 9317 adults and children
who underwent HCT from 28 study cohorts found
that approximately 16.6% (range, 3.6%-89%) of
patients developed CKD, defined as a decrease in
estimated glomerular filtration rate of at least
24.5 mL/min/1.73 m2 within the first year after HCT
[55]. The cumulative incidence of CKD developing
approximately 5 years after HCT ranges from 4.4%
to 44.3%, depending on the type of transplant and stage
of CKD [56,57]. In this setting, mortality is
significantly higher in transplant recipients with CKD
than in recipients who retain normal renal function,
even when controlling for comorbidities [58]. Patients
who develop CKD after HCT have a range of possible
outcomes, including end-stage renal disease requiring
chronic dialysis and renal transplantation.

The mechanisms of HCT-related chronic renal
dysfunction remain unknown. Although many clinical
factors have been associated with the development of
CKD, findings from the Seattle group and others
have refuted previous traditional risk factors, such as
total body irradiation (TBI)-containing conditioning
regimens [59-61]. These new data suggest that acute
and chronic GVHD are the primary pathogenic
mechanisms. Early studies focused on patients
receiving TBI as part of a conditioning regimen who
later developed hemolytic uremic syndrome [62-67],
or on patients who developed nephrotic syndrome
after HCT [68]; however, these specific subtypes of
renal disease likely do not account for the majority of
cases of CKD. Current thinking regarding the patho-
physiology of CKD implicates GVHD and/or the
therapies used to manage GVHD (Figure 1).

This new paradigm positingHCT-related CKD as
a renal manifestation of GVHD involves 2 possible
mechanisms: The kidney could be a direct target of
T cell–mediated renal damage, or the chronic systemic
inflammatory state of GVHD could lead secondarily
to cytokine-mediated nephropathy. A third potential
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Figure 2. Cumulative incidence curves of albuminuria and nonrelapse
mortality from day 100 to 1 year post-HCT: n 5 43 for albumin/creat-
inine ratio (ACR)\30; n5 54 for ACR 30-299; n5 17 for ACR$300.
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Albuminuria in hematopoietic cell transplantation patients: prevalence,
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Figure 3. Kaplan-Meier curves of albuminuria and overall survival from
day 100 to 1 year post-HCT: n5 44 for albumin/creatinine ratio (ACR)
\30; n 5 58 for ACR 30-299; n 5 18 for ACR $300. Hingorani SR,
Seidel K, Lindner A, Aneja T, Schoch G, McDonald G. Albuminuria in he-
matopoietic cell transplantation patients: prevalence, clinical associa-
tions, and impact on survival. Biol Blood Marrow Transplant. 2008
Dec;14(12):1365-72.
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explanation is that chronic exposure to calcineurin
inhibitors, such as cyclosporine and tacrolimus used
for GVHD prevention and/or treatment, causes
CKD. These are not necessarily mutually exclusive
hypotheses, given that T cell–mediated injury in
GVHD is intertwined with the effects of cytokines
[69], and that the effects of cyclosporine can be poten-
tiated in the presence of a chronic inflammatory state.
In an autopsy study of 26 patients undergoing autolo-
gous and allogeneic transplantations, renal tubulitis
identical to that seen in renal allograft rejection was
found in 67% of the patients [70]. In a report of min-
imal change nephrotic syndrome that developed after
HCT, large numbers of CD81 donor T cells were
found infiltrating the interstitium and periglomerular
areas of the kidney [71]. A mouse model of GVHD
kidney disease has shown that progressive venulitis,
endothelialitis, and tubulitis can begin within 2 weeks
after HCT [72].

Although albuminuria and other conventional risk
factors for progressive renal disease have been identi-
fied in other patient populations, little is known about
risk factors for CKD progression or why CKD and
proteinuria increase nonrelapse mortality in the
HCT patient population. In a cohort of 142 patients
(median age, 47 years) undergoing first HCT, albu-
minuria and proteinuria at day 100 post-HCT were
associated with an increased risk of CKD, nonrelapse
mortality (hazard ratio, 12.8; 95% confidence interval,
2.7-60.6), and overall mortality (hazard ratio, 7.7;
95%, confidence interval, 2.4-24.7) at 1 year post-
HCT (Figures 2 and 3) [73]. In a cohort of 376 patients
with CKD at 1 year post-HCT (defined as glomerular
filtration rate\60 mL/min/1.73 m2), 8% of the 109
patients for whom follow-up data was available (up
to 8 years) progressed to end-stage renal disease.
Albuminuria and proteinuria may reflect GVHD-
induced endothelial injury, inflammatory tubular and
interstitial damage, and progressive CKD; however,
whether albuminuria and proteinuria by themselves
cause the increased morbidity and mortality of HCT,
or merely reflect other processes, is unclear. Recent
research has focused on the direct role of albuminuria
and proteinuria on progression of CKD [74]. It is
thought that albuminuria triggers the release of proin-
flammatory cytokines and chemokines that recruit
macrophages and other inflammatory cells into the
interstitium, causing fibrosis and progression of
CKD. It may be that in patients undergoing HCT,
inflammatory damage to the tubules from GVHD
leads to albuminuria, which is a manifestation of renal
GVHD. Establishing such a mechanism would have
important therapeutic implications. Thus, determin-
ing whether albuminuria and proteinuria are epiphe-
nomena or true independent risk factors for
progression and mortality in the HCT population is
critical before changes in management can be pro-
posed in a prospective clinical trial. Longer-term fol-
low-up is needed in these patients to determine
whether progression occurs from albuminuria to overt
proteinuria and then to end-stage renal disease or
whether these conditions resolve with successful treat-
ment of GVHD and associated inflammation.

Extrapolating from previous studies in patients
with diabetes, we speculate that ace inhibitors and an-
giotensin II receptor blockers would be useful in pa-
tients with albuminuria and hypertension after HCT.
In fact, Cohen et al. [75] led a single-institution trial
in which patients were randomized to receive either
captopril (n 5 28) or placebo (n 5 27) starting on
day 135 after HCT. The patients who received
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placebo had a 15% incidence of hemolytic uremic syn-
drome at 1 year, compared with a 4% incidence in
treated patients. Five-year survival was 20% in the
placebo group and 45% in the captopril group.

Current evidence suggests the need to think differ-
ently about CKD in patients after HCT. Most post-
HCT CKD is not secondary to TBI or cyclosporine
use,. but rather may be a consequence of nephropathic
processes such as GVHD and the accompanying
chronic inflammatory state (Figure 1). Clearly, we first
need to better define the scope of the problem of CKD
in this patient population using accurate and sensitive
measures of kidney function. Identifying those patients
at risk for the development of CKD will be important
for early intervention and even prevention clinical trials
in this patient population. To determine how to best
minimize and treat CKD, future studies will need to
focus on the mechanisms through which GVHD leads
to renal injury, determining whether albuminuria is an
indicator of disease or a target for therapy, optimizing
prevention strategies, and identifying how best to
measure posttransplantation renal function.

Cardiovascular Disease

Cardiovascular (CV) complications are a leading
cause of therapy-related morbidity and mortality in
long-term survivors of childhood malignancy
[76-79]. A strong dose-dependent association between
anthracycline exposure and the risk of congestive heart
failure (CHF) is well recognized in patients not under-
going HCT; the risk is modified by younger age at
exposure, female sex, and chest irradiation [80-83].
Less is known regarding the incidence and predictors
of CHF after HCT in childhood. Potentially
cardiotoxic exposures unique to HCT include
conditioning with high-dose chemotherapy (especially
cyclophosphamide) and TBI [83]. In addition, HCT
survivors are at increased risk of developing such CV
risk factors as hypertension and diabetes, due in part
to exposure to TBI, prolonged immunosuppressive
therapy after allogeneic HCT, and other health condi-
tions, such as hypothyroidism or growth hormone de-
ficiency [83,84]. The modifying influence of these CV
risk factors on the risk of CHF after cardiotoxic
therapy has not been fully investigated.

The independent roles of pre-HCT exposure to
therapeutic agents, transplantation-related condition-
ing, and comorbidities in the development of late
CHF after HCT have been examined recently [85].
Patients with late CHF were identified from a cohort
of nearly 3000 11-year survivors of HCT. Pre-HCT
exposure to anthracyclines and the presence of post-
HCT comorbidities were the primary risk factors for
late CHF after HCT. Conditioning-related exposures
did not appear to contribute significantly to this risk.
The cardiotoxic effect of anthracyclines was greatest
in recipients of autologous HCT, with a cumulative
dose of $250 mg/m2 associated with a 30-fold
increased risk of late CHF. Overall survival was
\50% at 2 years after diagnosis of CHF. A subsequent
study evaluating long-term health-related outcomes in
3 cohorts—conventionally treated childhood cancer
survivors, survivors of childhood HCT, and sibling
controls—found that although HCT survivors had
a 13-fold greater risk of severe or life-threatening
CV complications compared with healthy controls,
the risk was equivalent to that seen in conventionally
treated patients [86]. One possible explanation for
this finding is that, as reported previously [85,87],
the risk for late-occurring CV complications after
HCT may be due largely to pre-HCT therapeutic ex-
posures, with little additional risk from conditioning-
related exposures or GVHD.

It is becoming increasingly recognized that risks
for many diseases result from an interaction between
inherited gene variants and environmental factors,
including chemical, physical, and behavioral factors.
However, large gaps remain in our knowledge of the
pathogenesis of therapy-related adverse events.
Emerging evidence suggests that individual genetic
susceptibility might be a determinant of therapy-
related CHF [88,89]. Significant cardiotoxicity has
been reported at cumulative doses of \250 mg/m2

[9], whereas doses exceeding 1000 mg/m2 have been
tolerated without long-term sequelae by a few individ-
uals [90]. In one study of long-term HCT survivors,
40% of the patients with clinical CHF received a cu-
mulative dose of\250mg/m2 [11]. This heterogeneity
might be explained, at least in part, by the presence of
genetic polymorphisms that alter the metabolism of
anthracyclines, the myocardial response to the drug,
as well as other factors thought to play a role in suscep-
tibility to de novo disease [88,89,91].

A recent case-control study examined the role of
functional single nucleotide polymorphisms in genes
involved in free radical metabolism (NAD[P]H
oxidase: subunits NCF4, RAC2, and CYBA) as well as
those affecting the synthesis of cardiotoxic anthracy-
cline alcohol metabolites (carbonyl reductase: CBR1
and CBR3) in modifying the risk of CHF after HCT
[92]. Patients with CHF and controls without CHF
were matched by age at HCT, type of HCT, ethnicity,
anthracycline dose, and duration of follow-up. Multi-
variate conditional logistic regression revealed that
a polymorphism in the NAD(P)H oxidase subunit
RAC2 (rs13058338, 7508T/A) conferred a 3.2-fold
greater risk of anthracycline-related CHF (odds ratio
[OR], 3.2; P 5 .05), and that the GG genotype of
rs9024 (1096G/A) in CBR1 carried a 10.8-fold
greater risk (OR, 10.8; P 5 .04). These preliminary
findings support the ‘‘unifying hypothesis’’ [93] that
anthracycline-related CHF can develop as a result of
oxidative stress or metabolic derangements induced
by cardiotoxic alcohol metabolites, and that the



Table 3. Adult Treatment Panel III Criteria for Metabolic
Syndrome: Indicated by 3 or More Positive Findings

Criterion Adults Adolescents*

High triglyceride level, mg/dL $150 $110
Low high-density lipoprotein cholesterol
level, mg/dL

Males <40 #40
Females <50 #40
Abdominal obesity, waist circumference, cm
Males >102 $90th percentile
Females >88 $90th percentile
High fasting glucose level, mg/dL $100† $100†
High blood pressure, mm Hg $130/85 $90th percentile

*Adult Treatment Panel III criteria modification for adolescents (age 12-
19 years) as described by Cook et al. [105].
†The American Diabetes Association’s 2003 definition lowered abnor-
mal fasting glucose level to 100 mg/dL [106], and this change has been
incorporated into the current definition of metabolic syndrome [107].
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high-risk variants of RAC2 and CBR1 play critical roles
in modifying this risk. Replication and confirmation of
these findings by others in independent study samples
could set the stage for identifying a subgroup of
patients up front who could perhaps receive alternative
treatment for management of cancer; whereas for
those who have already received anthracyclines, iden-
tification of high-risk alleles would warrant closer sur-
veillance for cardiotoxicity and use of medications that
modulate cardiac function.

Insulin Resistance and Abnormal Body
Composition

Survivors of allogeneic HCT have a 2.3-fold
greater risk for premature CV-related death compared
with the general population [94,95]. The exact etiology
of CV risk and subsequent death is largely unknown,
although the development of ‘‘metabolic syndrome’’
(the constellation of central obesity, insulin
resistance, glucose intolerance, dyslipidemia, and
hypertension associated with a substantially increased
risk for type 2 diabetes mellitus and atherosclerotic
CV disease [Table 3]) and, more specifically, insulin
resistance as a consequence of HCT have been sug-
gested [96-98]. Studies comparing conventionally
treated leukemia survivors and HCT survivors found
that the HCT survivors were significantly more likely
to manifest metabolic syndrome and multiple adverse
cardiac risk factors, including central adiposity,
hypertension, insulin resistance, and dyslipidemia
[99-100]. The concern is that over time, survivors
who develop metabolic syndrome after HCT will be
at greater risk for developing significant CV-related
events and/or premature death from CV-related
causes. The Bone Marrow Transplant Survivor Study
examined diabetes, hypertension, and cardiovascular
events in 1089 patients surviving 2 years or longer after
HCT [100]. At a mean age of 39 years and with a mean
post-HCT follow-up of nearly 9 years, survivors of al-
logeneic HCT were 3.6 times more likely to report di-
abetes than siblings and twice as likely to report
hypertension. TBI exposure also was associated with
an increased risk of diabetes (OR, 3.42; 95% CI,
1.55-7.52). CV outcomes were also examined in nearly
1500 .2-year HCT survivors treated in Seattle
between 1985 and 2006 relative to an age-, year-, and
sex-matched population-based comparison group
[101]. Using state hospital and death registry data
defining key CV outcomes revealed that the HCT sur-
vivors had a higher rate of CV-related mortality and
a greater cumulative incidence of ischemic heart
disease, cardiomyopathy/heart failure, stroke, vascular
diseases, and rhythm disorders. The survivors also had
a greater cumulative incidence of related conditions
that predispose to more serious cardiovascular disease,
including hypertension, renal disease, dyslipidemia,
and diabetes.
Why HCT survivors are at greater risk for adverse
CV outcomes is not completely clear. Although
descriptive and epidemiologic-based studies have at
least called attention to the problem, thus far they
have provided little insight into the underlying patho-
physiology of CV disease in HCT survivors or clues as
to why these events are more common in HCT survi-
vors than the general population. We also know little,
if anything, about whether any preventive strategies or
other interventions might modify this risk.

The association of obesity with diabetes and risk of
CV disease in the general population is well estab-
lished, but obesity as determined by body mass index
(BMI) is uncommon in long-term survivors of HCT
[100]. However, even with a normal BMI, HCT survi-
vors can develop significantly altered body composi-
tion, with an increase in total percent fat mass (PFM)
and a decrease in lean body mass (LBM). This phe-
nomenon, termed ‘‘sarcopenic obesity,’’ results in
a loss of myocyte insulin receptors and an increase in
adipocyte insulin receptors (which are less efficient in
binding insulin and clearing glucose), ultimately con-
tributing to insulin resistance [101-103]. Preliminary
data from 119 children and young adults (current
mean age, 26.1 6 0.8 years; 61.3% male) who had
undergone HCT at a mean age of 12.2 6 0.6 years
and 81 healthy sibling controls (current mean age,
22.8 6 0.9 years; 49.4% male) found that the HCT
survivors had significantly lower weight, but the
2 groups had no differences in BMI or waist
circumference [104]. HCT survivors had significantly
higher PFM and lower LBM. Insulin resistance was
measured by euglycemic hyperinslulinemic clamp
studies, and results were adjusted for PFM. Compared
with controls, HCT survivors were significantly more
insulin-resistant hand had significantly higher levels of
total cholesterol, low-density lipoprotein cholesterol,
and triglycerides. Interestingly, these differences
were found only in patients who had received TBI as
part of a transplantation conditioning regimen. These
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preliminary data thus reveal that even at a relatively
young age, HCT survivors have increased CV risk fac-
tors that are independent of obesity, but may be related
to altered body composition (ie, decreased LBM and
increased PFM), insulin resistance, and TBI exposure.

Although it is becoming more evident that HCT
survivors are at increased risk for developing insulin
resistance, the related mechanistic pathways and risk
factors are still undefined, and identifying these at cel-
lular and genetic levels will be critical. In addition, fur-
ther definition of the role of altered body composition
in insulin resistance and CV risk in HCT survivors is
needed. Whether CV risk and abnormal body compo-
sition are related primarily to TBI exposure, cortico-
steroid exposure, a chronic inflammatory state
(mediated or related to GVHD), or some other mech-
anism needs to be carefully examined. Finally, studies
of the post-HCT time course of development of CV
risk factors and changes in body composition are
needed to will guide the development of preventive
strategies and interventions.
Chronic Pulmonary Dysfunction

Declining lung function is a significant complica-
tion in the months and years after successful allogeneic
HCT. Two forms of chronic pulmonary dysfunction
are commonly observed: obstructive lung disease
(OLD) and restrictive lung disease (RLD) [108-112].
The incidence of both forms can range from 10% to
40% depending on donor source, the time interval
after HCT, definition applied, and presence of
chronic GVHD [108]. In each scenario, collagen de-
position and the development of fibrosis in the intersti-
tial spaces (RLD) or the peribronchiolar spaces (OLD)
are believed to contribute to the patterns of lung dys-
function detected on pulmonary function tests [113].

The most common form of OLD after allogeneic
HCT is bronchiolitis obliterans (BO) [110, 114,115].
First reported in the 1980s, BO is a serious and
potentially life-threatening late effect characterized
by an inflammatory process resulting in bronchiolar
obliteration, fibrosis, and progressive OLD [108]. His-
torically, BOhas been used to describe chronicGVHD
of the lung starting 6-20 months after HCT. Patients
with BO may be initially asymptomatic but typically
present with cough, wheezing, or dyspnea on exertion
[113]. Pulmonary function testing reveals OLD with
general preservation of forced vital capacity (FVC), re-
ductions in forced expiratory volume in 1 second
(FEV1), and associated decreases in the FEV1/FVC
ratio with or without a significant decline in diffusion
capacity of the lung for CO [35]. The diagnosis of
OLD without histological confirmation is commonly
termed BO syndrome (BOS). More recently, air
flow obstruction has been defined as a .5% per year
decline in percent predicted FEV1 with the lowest
posttransplantation FEV1/FVC ratio \0.8 [116].
Risk factors for BO include lower pretransplantation
FEV1/FVC values, concomitant pulmonary infection,
chronic aspiration, acute or chronic GVHD, older re-
cipient age, use of a mismatched donor, and high-
dose (versus reduced-intensity) conditioning
[108,114]. The clinical course of BO is variable, but
patients frequently develop progressive and
debilitating respiratory failure despite the enhanced
immunosuppression [108].

RLD is defined by reductions in FVC, total lung
capacity (TLC), and diffusion capacity of the lung for
CO. In contrast toOLD, the FEV1/FVC ratio is main-
tained near 100%. RLD is common after HCT,
reported in as many as 25%-45% of patients by day
100 [108]. Importantly, declines in TLC or FVC oc-
curring at 100 days and 1 year post-HCTare associated
with increased nonrelapsemortality. Early reports sug-
gested that the incidence of RLD increases with
advancing recipient age, but more recent studies have
revealed significant RLD in children receiving HCT
[117]. The most recognizable form of RLD is bron-
chiolitis obliterans organizing pneumonia (BOOP).
Clinical features include dry cough, shortness of breath
and fever. Radiographic findings include diffuse, pe-
ripheral, fluffy infiltrates consistent with airspace con-
solidation. Although reported in less than 10%ofHCT
recipients, the development of BOOP is strongly asso-
ciated with previous acute and chronic GVHD [118].

The complex pathophysiology of chronic lung in-
jury after HCT is poorly understood and represents
the most significant gap in the current knowledge of
this spectrum of late effects. This limitation stems
from the paucity of (1) correlative data obtained from
afflicted HCT recipients, (2) controlled clinical trials,
and (3) suitable animal models for either RLD or
OLD. RLD andOLD after HCT likely involve an ini-
tial insult to the pulmonary vascular endothelium and
leukocyte recruitment into the lung parenchyma, fol-
lowed by a dysregulated reparative response character-
ized by the interplay among recruited donor-derived
leukocytes, bronchiolar and interstitial epithelial cells,
and lung fibroblasts and the ultimate deposition of col-
lagen [108]. The possible role of innate immunity in
the development of OLD was recently highlighted
by 2 clinical studies. Investigators found that genetic
variations in the bactericidal/permeability-increasing
protein and nucleotide-binding oligomerization
domain containing caspase-2 recruitment domain
family member 15 (NOD2/CARD15) influence the
risk of airflow obstruction and BO after allogeneic
HCT [119,120].

A triphasic model of RLD and OLD after HCT
has been proposed in which alloantigen recognition
is the inciting stimulus for pulmonary inflammation
[108]. In phase I, an acute pneumonitis develops as
a consequence of an alloimmune response, resulting
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in the sequential influx of lymphocytes, macrophages,
and neutrophils into an inflamed lung parenchyma. In
phase II, the persistence of an inflammatory signal in
the setting of exuberant repair mechanisms promotes
the transition from acute to chronic injury. If the incit-
ing injurious stimuli involves predominantly bronchi-
olar epithelial cells, then phase II is associated with the
concentric infiltration of lymphocytes and collagen
deposition in the peribronchiolar areas, resulting in
the development of chronic bronchiolitis. If, in con-
trast, the principal target of early damage is the alveo-
lar epithelium, then leukocyte recruitment and matrix
deposition during phase II are confined primarily to
the interstitial space. Activated lymphocytes then
migrate into the airway mucosa and contribute to epi-
thelial injury. As chronic inflammation proceeds to
phase III, lung fibroblasts increase in number and con-
tribute to the enhanced deposition of collagen and
granulation tissue in and around bronchial structures,
ultimately resulting in complete obliteration of small
airways and fixed obstructive defects. Similarly, fibro-
blast proliferation and intraseptal collagen deposition
during phase III ultimately results in interstitial thick-
ening, septal fibrosis, significant volume loss, and
severe restrictive lung disease.

Clinical and experimental data suggest that the
progression to a chronic, profibrotic form of pulmo-
nary toxicity involves the secretion of immunomodula-
tory proteins, and in this context, tumor necrosis factor
(TNF)-amay be a central factor in the triphasic model
outlined earlier. Strong evidence for a role of TNF-a
in the transition from acute to chronic lung injury
comes from a study using transgenic mice with tar-
geted overexpression of TNF-a in the lungs. Early
lung histopathology includes a robust leukocytic infil-
trate, whereas prolonged exposure to TNF-a results in
chronic inflammation and fibrosis [121].

Patients with more severe disease at the time of
diagnosis tend to have a poor prognosis; early recogni-
tion and treatment may be important to successful
outcomes. Thus, increased surveillance for lung dys-
function by serial pulmonary function testing (includ-
ing an assessment of lung volume, spirometry, and
diffusion capacity) for the first 2 years after HCT
should be considered whenever feasible. Given the sig-
nificant morbidity and mortality associated with ad-
vanced OLD and RLD, a careful, comprehensive
evaluation is recommended once persistent signs or
symptoms of pulmonary dysfunction are detected
[114,116]. Testing should include a high-resolution
computed tomography scan of the chest and bron-
choalveolar lavage to exclude opportunistic infections.
Lung biopsy also can be quite helpful in making
a definitive diagnosis.

Standard therapy for OLD combines enhanced
immunosuppression with supportive care, including
antimicrobial prophylaxis, bronchodilator therapy,
and supplemental oxygen when indicated. Although
the treatment for RLD is less well defined, increasing
evidence suggests that this form of pulmonary dysfunc-
tion also may be immunologically mediated [118].
Unfortunately, the response to multiple agents, includ-
ing corticosteroids, cyclosporine, tacrolimus, and
azathioprine, is limited and tends to occur only early
in the course of treatment [108]. The potential role
for TNF-a in the pathogenesis of both OLD and
RLD suggests that neutralizing agents such as etaner-
cept (Enbrel; Amgen, ) may have promise [122]. The
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combination of azithromycin,montelukast, and inhaled
fluticasone (FAM) in preventing progression of newly
diagnosed BOS is currently under investigation [123].

Noninfectious lung injury after allogeneic HCT re-
mains a significant problem. Determining whether the
lung is a target of GVHD is crucial. Similarities
between the histopathologic features of BO seen in
association withOLD after allogeneicHCT and during
lung allograft rejection, together with reports of im-
proved lung function with immunosuppression,
strongly suggest operative pathways of alloimmune
activation. Further research on mechanisms of chronic
lung injury after HCT is needed to improve our under-
standing of this debilitating spectrum of late effects and
guide the development of novel therapeutic strategies
for treatment and prevention. Studying a triphasic
model of chronic, noninfectious lung injury after HCT
that involves T cell activation, leukocyte recruitment,
and collagen deposition and fibrosis may lead to im-
provements in therapy. Finally, gaining insight into the
factors affecting the anatomic specificity (peribronchio-
lar versus interstitial) of chronic lung injury and the role
of acute inflammation in the initial damage to the alveo-
lar or bronchiolar epithelium will enhance our under-
standing of posttransplantation pulmonary dysfunction.
CONCLUSIONS

Current data suggest that post-HCT organ com-
plications occur as a result of cellular damage that leads
to a cascade of complex events. The degree of cellular
damage that results is related to the overall health
status, other comorbidities, and baseline organ func-
tion of the pre-HCT recipient, with additional impacts
related to the intensity of the conditioning regimen,
infections, drug exposures, and delayed immune toler-
ance. The interplay of inflammatory processes and
dysregulated cellular repair likely contributes to end-
organ fibrosis and dysfunction (Figure 4).

HCT survivors have a high burden of morbidity,
especially related to the development of organ-
specific late effects after HCT. However, there remain
significant gaps in our knowledge of the pathophysiol-
ogy of therapy-related organ toxicities after HCT.
These gaps can be addressed by closely examining dis-
ease biology and identifying the patients at greatest
risk for these adverse outcomes. In addition, strategies
are needed for targeted disease prevention and health
promotion efforts for individuals at high risk because
of their genetic makeup or specific exposure profile.
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