401 research outputs found

    Permeability evolution during progressive development of deformation bands in porous sandstones

    Get PDF
    [1] Triaxial deformation experiments were carried out on large (0.1 m) diameter cores of a porous sandstone in order to investigate the evolution of bulk sample permeability as a function of axial strain and effective confining pressure. The log permeability of each sample evolved via three stages: (1) a linear decrease prior to sample failure associated with poroelastic compaction, (2) a transient increase associated with dynamic stress drop, and (3) a systematic quasi-static decrease associated with progressive formation of new deformation bands with increasing inelastic axial strain. A quantitative model for permeability evolution with increasing inelastic axial strain is used to analyze the permeability data in the postfailure stage. The model explicitly accounts for the observed fault zone geometry, allowing the permeability of individual deformation bands to be estimated from measured bulk parameters. In a test of the model for Clashach sandstone, the parameters vary systematically with confining pressure and define a simple constitutive rule for bulk permeability of the sample as a function of inelastic axial strain and effective confining pressure. The parameters may thus be useful in predicting fault permeability and sealing potential as a function of burial depth and faul

    Understanding the recovery of rare-earth elements by ammonium salts

    Get PDF
    While the recovery of rare earth elements (REEs) from aqueous solution by ionic liquids (ILs) has been well documented, the metal compounds that are formed in the organic phase remain poorly characterized. Using spectroscopic, analytical, and computational techniques, we provide detailed chemical analysis of the compounds formed in the organic phase during the solvent extraction of REEs by [(n-octyl)3NMe][NO3] (IL). These experiments show that REE recovery using IL is a rapid process and that IL is highly durable. Karl-Fischer measurements signify that the mode of action is unlikely to be micellar, while ions of the general formula REE(NO3)4(IL)2− are seen by negative ion electrospray ionization mass spectrometry. Additionally, variable temperature 139La nuclear magnetic resonance spectroscopy suggests the presence of multiple, low symmetry nitrato species. Classical molecular dynamics simulations show aggregation of multiple ILs around a microhydrated La3+ cation with four nitrates completing the inner coordination sphere. This increased understanding is now being exploited to develop stronger and more selective, functionalized ILs for REE recovery

    Tuneable separation of gold by selective precipitation using a simple and recyclable diamide

    Get PDF
    The separation of metals from electronic waste is an enduring technological and societal challenge, and new metal extraction, refining and recycling solutions are needed. Here the authors report a recyclable and tuneable chemical reagent that separates valuable metals such as gold by direct and selective precipitation from various acidic, mixed-metal solutions of relevance to extraction and recycling industries

    Impact of Traumatic Brain Injury on Neurogenesis

    Get PDF
    New neurons are generated in the hippocampal dentate gyrus from early development through adulthood. Progenitor cells and immature granule cells in the subgranular zone are responsive to changes in their environment; and indeed, a large body of research indicates that neuronal interactions and the dentate gyrus milieu regulates granule cell proliferation, maturation, and integration. Following traumatic brain injury (TBI), these interactions are dramatically altered. In addition to cell losses from injury and neurotransmitter dysfunction, patients often show electroencephalographic evidence of cortical spreading depolarizations and seizure activity after TBI. Furthermore, treatment for TBI often involves interventions that alter hippocampal function such as sedative medications, neuromodulating agents, and anti-epileptic drugs. Here, we review hippocampal changes after TBI and how they impact the coordinated process of granule cell adult neurogenesis. We also discuss clinical TBI treatments that have the potential to alter neurogenesis. A thorough understanding of the impact that TBI has on neurogenesis will ultimately be needed to begin to design novel therapeutics to promote recovery

    Challenges and Applications of Supramolecular Metalate Chemistry

    Get PDF
    While the supramolecular chemistry of simple anions is ubiquitous, the targeting and exploitation of their metal-containing relatives, the metalates, is less well understood. This mini review highlights the latest advances in this emergent area by discussing the supramolecular chemistry of metalates thematically, with a focus on the exploitation of metalates in a diversity of applications, including medical imaging and therapy, environmental remediation, molecular magnetism, catalysis, perovskite materials, and metal separations. The unifying features of these systems are identified with a view to allow the supramolecular chemist to target the unique material properties of the metalates, even in areas that are currently relatively immature.</p

    Reducing the Competition: A Dual-Purpose Ionic Liquid for the Extraction of Gallium from Iron Chloride Solutions

    Get PDF
    The separation of gallium from iron by solvent extraction from chloride media is challenging because the anionic chloridometalates, FeCl4&minus; and GaCl4&minus;, display similar chemical properties. However, we report here that the selective separation of gallium from iron in HCl solution can be achieved using the dual-purpose ionic liquid methyltrioctylammonium iodide in a solvent extraction process. In this case, the reduction of Fe3+ to Fe2+ by the iodide counterion was found to inhibit Fe transport, facilitating quantitative Ga extraction by the ionic liquid with minimal Fe extraction from 2 M HCl
    corecore