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[1] We describe the conceptual design and first application of a new method for
simultaneously measuring the fluid permeability and specific storage of a rock sample. In
our laboratory tests, a constant flow rate single-stroke piston pump injects fluid into a
cored rock specimen placed between two reservoirs in which fluid pressure is recorded.
For this geometry we have derived a new analytic solution of the governing diffusion
equation describing the one-dimensional fluid flow. This new analytic solution in the time
domain consists of two parts: an asymptotic linear function of time, and a transient part
which decays to zero as time increases. The model predicts that the fluid pressures of the
upstream and downstream reservoirs both increase linearly with time after the initial
transient vanishes. The slope of the linear pressure variation depends on the specific
storage of the rock sample for a given test condition, and the differential pressure between
the two reservoirs is related to the permeability. If the downstream pressure is not
recorded, the permeability can be calculated from the zero intercept of the linear upstream
fluid pressure variation. This calculation is quite straightforward and no tedious history
curve matching is required. We applied our new method to measure fluid permeability and
specific storage of Westerly granite. The measured values of the permeability are
consistent with those published in the literature. The main advantages of our method are
the reliability of the testing method, its economy of time, and the flexibility in adapting the
system parameters to tests at different conditions. INDEX TERMS: 1829 Hydrology:

Groundwater hydrology; 1832 Hydrology: Groundwater transport; 3994 Mineral Physics: Instruments and

techniques; KEYWORDS: fluid diffusion, fluid permeability, specific storage, hydraulic properties, Westerly

granite

Citation: Song, I., S. C. Elphick, I. G. Main, B. T. Ngwenya, N. W. Odling, and N. F. Smyth (2004), One-dimensional fluid diffusion

induced by constant-rate flow injection: Theoretical analysis and application to the determination of fluid permeability and specific

storage of a cored rock sample, J. Geophys. Res., 109, B05207, doi:10.1029/2003JB002395.

1. Introduction

[2] Characterization of the hydraulic properties of rocks
is essential in the exploitation of natural fluid resources,
such as water, steam, petroleum, and natural gas, buried
underground. The low permeability of tight rocks is often
exploited for retarding the underground movement of
hazardous wastes [Roxburgh, 1987; Savage, 1995]. In
conjunction with the physical properties of reservoir rocks,
the hydraulic characteristics of the fluid trapped within the

pore space influence the elastic response [Biot, 1941; Rice
and Cleary, 1976; Detournay and Cheng, 1988], the
inelastic behavior [Wong and Biegel, 1985; Fournier,
1996; Simpson, 2001; Simpson et al., 2001], and the
time-dependent reactions [Johnson et al., 1973; Mortensen
et al., 1977; Roeloffs et al., 1989] of rocks. Therefore
reliable measurements of the hydraulic flow parameters of
rocks are essential for modeling of many geologic pro-
cesses, for the prediction of seismic sensitivity, and for the
design of aquitard systems for safe storage of hazardous
wastes.
[3] In general, the nature of fluids in reservoir rocks can

be characterized in terms of quantity (concentration) and
mobility of the fluid. The specific storage Ss deals with the
capacity of a reservoir rock for storing a fluid as a function
of fluid pressure, while the permeability k measures
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the ability of the rock to transmit a fluid through the
interconnected passages and voids of the rock. Because
saturated rock comprises a solid matrix with fluid distrib-
uted throughout in connected pore spaces, the compressive
storage of fluid in the rock can be obtained from the
compressibility of each part and the connected porosity of
the rock sample [Brace et al., 1968]. According to Darcy’s
law, permeability can be determined in steady state flow
conditions by the linear relationship between the total fluid
flux across a sample, and the measured pressure gradient
developed along the specimen. However this method is not
always convenient for extremely low permeability rocks
because long periods of time are required to establish a
steady state [Hsieh et al., 1981; Zeynaly-Andabily and
Rahman, 1995].
[4] In order to achieve results more rapidly, a non-

steady state method known as the pulse transient method
was suggested by Brace et al. [1968]. The pulse method is
relatively fast, and has been widely adopted to measure the
permeability of tight rocks, with slight modifications [e.g.,
Zoback and Byerlee, 1975; Trimmer et al., 1980; Neuzil et
al., 1981; Lin, 1982; Lin et al., 1986; Zeynaly-Andabily
and Rahman, 1995; Liang et al., 2001; Kwon et al., 2001].
The experimental configuration consists of a cylindrical
specimen held between two fluid reservoirs. A sudden
pulse in the fluid pressure in the upstream reservoir
induces fluid flow across the specimen due to the pressure
difference between the two reservoirs. The pressure differ-
ence decay rate is related to the permeability of the
sample. Brace et al. [1968] presented an approximate
solution for fluid permeability under the assumption that
the specific storage of the rock specimen is negligible.
This simplification is no longer needed when numerical
methods are used [Trimmer et al., 1980; Lin et al., 1986].
However, it is still necessary to measure the specific
storage of the sample independently. Hsieh et al. [1981]
derived an exact analytical solution for the calculation of
both the specific storage and the permeability. However
calculating these two unknowns requires a two-test proce-
dure with different size reservoirs [Neuzil et al., 1981] or a
history matching routine to compare experimental data
with theoretical curves [Zeynaly-Andabily and Rahman,
1995].
[5] If a fluid is pumped at a constant flow rate into one

end of a cylindrical rock specimen, the pressure in the pump
(or upstream reservoir) increases with time. The pressure
difference along the sample itself eventually stabilizes to a
constant value when the downstream flow rate equals the
injection flow rate. The permeability of the sample can be
calculated from this stabilized, steady state pressure differ-
ence using Darcy’s law. However, it may take a relatively
long time to reach this steady state flow for rocks with very
low permeability [Olsen et al., 1985; Esaki et al., 1996].
Morin and Olsen [1987] presented an analytic method for
determining values of the specific storage and permeability
from the initial transient response during the early testing
time. Esaki et al. [1996] improved this method by taking
into account the compressive storage of the flow pump
system. However, this method also requires a tedious curve-
matching routine.
[6] This paper presents a new technique for simulta-

neously measuring permeability and specific storage of a

single core sample, based on the theoretical analysis of the
one-dimensional fluid diffusion induced by a constant-rate
flow pump into a specimen placed between two reservoirs
(Figure 1). In the conceptual model, the downstream
reservoir is sealed, and a pump in the upstream reservoir
forces fluid through the rock at a constant flow rate. Our
analytic solution of the pressure diffusion equation with this
boundary condition provides a new method of simulta-
neously determining the permeability and the specific
storage of a rock sample in a straightforward, reliable and
relatively rapid way. We validated the method by applying
it to Westerly granite, which has been commonly used as a
standard rock type for hydraulic and mechanical rock
properties.

2. Governing Equation and Initial-Boundary
Conditions

[7] The schematic diagram and the boundary conditions
are depicted in Figure 1. The experimental arrangement
consists of a cylindrical rock specimen placed between two
reservoirs with a flow pump connected to the upstream
reservoir. For the boundary condition at x = L, Morin and
Olsen [1987] assumed that the flow induced by the pressure
pump penetrates immediately into the rock specimen. If the
pressure in the pump system increases, however, this
assumption is no longer valid because the upstream reser-
voir is deformable and the fluid is compressible. Thus the
actual flow rate entering the specimen at a certain time t
equals the difference between the total pumping rate and the
extra volume change induced by the compliance of the
pump system and the compressibility of the fluid per unit

Figure 1. Schematic diagram of the test system. (a) A
specimen located between two reservoirs with an initially
equilibrated fluid pressure in the closed system, and (b) the
fluid compression by the piston stroke inducing one-
dimensional diffusion along the specimen. Q is the pumping
rate defined by the piston speed and the piston area; q0(t)
and qL(t) are the flow rate at the specimen boundaries, x = 0
and L, respectively.
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time interval. Thus the actual flow rate qL(t) at x = L can be
written as follows [Esaki et al., 1996]:

qL tð Þ ¼ Q� Su
dpu

dt
; ð1Þ

where Q, Su and pu are the constant pumping rate, the
compressive storage of the upstream reservoir and the
upstream pressure, respectively.
[8] The inlet fluid migrates through the interconnected

voids in the rock to the other side of the specimen
(Figure 1b). The downstream reservoir is closed, so the
downstream fluid pressure increases. The relationship
between the flow rate q0(t) at x = 0 and the rate of change
of the pressure dpd/dt is expressed as

q0 tð Þ ¼ Sd
dpd

dt
; ð2Þ

where Sd and pd are the compressive storage and the fluid
pressure of the downstream reservoir, respectively.
[9] Both Su and Sd are adjustable in laboratory tests by

changing the volumes of the upstream and downstream
reservoirs Vu and Vd, respectively. For example, if the
downstream volume Vd is zero, Sd vanishes and q0(t) = 0.
The upstream reservoir volume Vu can be easily adjusted by
changing the position of the piston (Figure 1a). Our new
boundary condition is more general than that taken by
Morin and Olsen [1987] or Esaki et al. [1996] because
the constant downstream pressure (dpd/dt = 0) boundary
condition they used is a special case corresponding to Sd !
1 in our test arrangement.
[10] The fluid pore pressure p as a function of time t and

axial distance x is described by the diffusion equation

@2p x; tð Þ
@x2

� 1

a
@p x; tð Þ

@t
¼ 0; ð3Þ

where a is the hydraulic diffusivity expressed as k/mSs, with
m the dynamic viscosity of the fluid. The initial condition
(t = 0) is given by

p x; 0ð Þ ¼ 0; 0 � x � L ð4Þ

and the boundary conditions at x = 0 and x = L are

x ¼ 0 :
Sd

KA

dpd

dt
� @p

@x

� �
x¼0

¼ 0; t > 0 ð5Þ

x ¼ L :
Su

KA

dpu

dt
þ @p

@x

� �
x¼L

¼ Q

KA
; t > 0; ð6Þ

where K = k/m and the other parameters are

p(x, t) fluid pressure in the sample as a function of x and t;
pd fluid pressure at the downstream reservoir;
pu fluid pressure at the upstream reservoir;
x distance from the downstream boundary along the

sample;
t time from the start of pumping;
A cross-sectional area of the sample;

L length of the sample;
k permeability of the sample;
m dynamic viscosity;
Ss specific storage of the sample;
Su upstream compressive storage;
Sd downstream compressive storage.

3. Theoretical Analysis

3.1. Analytic Solution

[11] The partial differential equation (3) with the initial-
boundary values given by equations (4), (5) and (6) was
solved by the Laplace transform method. The detailed
procedure is given in Appendix A. The solution for fluid
pressure as a function of position x and time t is

p x; tð Þ ¼ F

b
t þ x2

2a
þ ldx�

L3

6a2b

�
�lu þ ld

2ab
L2 � luld

b
L

�

� 2F
X1
m¼1

exp �af2
mt

� �
cosfmx� aldfm sinfmxð Þ

fma sinfmLþ f2
mb cosfmL

ð7Þ

where lu = Su
KA
, ld = Sd

KA
, F = Q

KA
, b = L

a + Su
KA

+ Sd
KA
, a = 3 �

5lulda
2fm

2 � aL(lu + ld)fm
2 , and b = L + 4a(lu + ld) �

lulda
2Lfm

2 . The eigenvalues fm are the roots f of

tanfL ¼ af lu þ ldð Þ
lulda2f2 � 1

: ð8Þ

The analytic solution consists of a steady state part
(asymptotic solution) and a transient part (series solution).
At the beginning of pumping, the transient dominates, but
then decays with time because of the negative exponential
term in equation (7) and eventually becomes negligible. In a
real test, we can measure the fluid pressures only at the
upstream and downstream reservoirs. The pressures at the
upstream and downstream reservoirs as a function of time
can be found by setting x = 0 and x = L in equation (7),
giving

pu tð Þ ¼ F

b
t � L3

6a2b
� lu þ ld � b

2ab
L2

�
�luld � bld

b
L

�

� 2F
X1
m¼1

exp �af2
mt

� �
cosfmL� aldfm sinfmLð Þ

fma sinfmLþ f2
mb cosfmL

ð9Þ

and

pd tð Þ ¼ F

b
t � L3

6a2b
� lu þ ld

2ab
L2 � luld

b
L

� �

� 2F
X1
m¼1

exp �af2
mt

� �
fma sinfmLþ f2

mb cosfmL
: ð10Þ

3.2. Special Cases

3.2.1. Infinite Downstream Reservoir
[12] If the downstream pressure is kept constant, for

example by allowing fluid to exit the reservoirs, then the
compressive storage of the downstream reservoir is effec-
tively infinite according to equation (2). If there is no
compressive storage in the upstream reservoir, the flow rate
Q generated by the piston stroke is equal to the inlet flow
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rate into the sample qL(t) at the upper boundary of the rock
specimen (equation 1). These boundary conditions have
already been used for the solution of the heat equation by
Carslaw and Jaeger [1959, p. 113] and for the measurement
of hydraulic properties in a conventional triaxial system
[Olsen et al., 1985;Morin and Olsen, 1987]. Setting Sd =1
and Su = 0 simplifies the eigenvalue equation (8) to

tanfL ¼ 1: ð11Þ

Thus fm is (2m + 1)p/2L, m = 0, 1, 2, 3, 	 	 	. Substituting
these values for Sd, Su and fm into equations (9) and (10),
the upstream and downstream pressures become

pu tð Þ ¼ mQL
kA

1� 8

p2

X1
m¼0

1

2mþ 1ð Þ2

"
exp

�a 2mþ 1ð Þ2p2t

4L2

 !#

ð12Þ

and

pd tð Þ ¼ 0; ð13Þ

respectively. Equation (12) is identical to equation (3) of the
paper by Morin and Olsen [1987], so our generic solution
reduces to the same result for this specific set of boundary
conditions. In this case, a steady state is reached, since the
upstream pressure pu stabilizes at mQL/kA after the transient
term decays to a negligible value.
[13] Theoretical curves for pu(t) calculated from equation

(12) are depicted in Figure 2a for two values of the specific
storage for a given permeability. Both curves show an initial
transient with the solution evolving asymptotically to the
steady state value given by Darcy’s law. The steady state
fluid pressure is a function of the permeability of the rock,
while the shape of the transient curve is related to the
specific storage (Figure 2a). For the example with a larger
specific storage (dashed line), it takes a longer time to
establish a steady state flow. The permeability k can be
simply calculated from the steady state pressure gradient
using Darcy’s law. The specific storage Ss can be deter-
mined from the initial transient curve based on graphical
curve matching between experimental and theoretical data.
This can also be done by a numerical method using
parameter identification theory [Esaki et al., 1996].
[14] When the compressive storage of the pump system

(the upstream reservoir) is finite, the eigenvalue equation (8)
becomes

tanfL ¼ 1

aluf
; ð14Þ

and the upstream fluid pressure is

pu tð Þ ¼ mQL
kA

1� 2
X1
m¼1

"
exp �af2

mt
� �

f2
mL Lþ alu þ a2l2

uf
2
mL

� �
#
: ð15Þ

Equations (14) and (15) are the same as equations (5)
and (6), respectively, from Esaki et al. [1996]. Three
theoretical curves for different Su are shown in Figure 2b
to illustrate its effect on the transient. The transient

duration increases as the compliance of the system
increases. While the upstream fluid pressure increases in
the transient stage, the actual flow rate qL(t) at the rock
boundary x = L is smaller than the pumping rate Q induced
by the movement of the piston according to equation (1). As
the fluid flow in the rock specimen approaches the steady
state, qL(t) becomes equal to Q. Thus a finite Su does not
affect the magnitude of the asymptotic maximum pressure,
which is determined by the steady state flow along the
specimen. The permeability can be simply calculated from
Darcy’s law, but it becomes more complicated to compute
the specific storage of a rock specimen from the transient
curve in this case.
3.2.2. Zero Downstream Reservoir
[15] If there is no downstream reservoir (Vd = 0), so that

no fluid comes out of the specimen at the downstream side,
then the compressive storage Sd of the downstream will be
zero according to equation (2). To our knowledge, this
boundary condition has never previously been considered
in constant flow rate permeability tests, presumably because
this boundary condition does not allow the fluid to pass

Figure 2. Theoretical curves of the upstream pressure as a
function of time when the downstream pressure is zero
showing the different transient curves depending on (a) the
specific storages of specimen and (b) the compressive
storage of upstream reservoir.
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through the specimen. Assuming no compressive storage of
the pump system, the eigenvalue equation (10) reduces to

tanfL ¼ 0; ð16Þ

so that f = mp/L, m = 0, 1, 2, 3, 	 	 	. The upstream and
downstream pressures then reduce to

pu tð Þ ¼ Qt

SsAL
þ mQL

kA

1

3
� 2

p2

X1
m¼1

1

m2
exp

�m2p2at
L2

� �" #
ð17Þ

and

pd tð Þ ¼ Qt

SsAL
� mQL

kA

1

6
þ 2

p2

X1
m¼1

�1ð Þm

m2
exp

�m2p2at
L2

� �" #
:

ð18Þ

These solutions can also be found in heat conduction
problems with constant flux at x = L and no flux at x = 0, as
given by Carslaw and Jaeger [1959, p. 112].
[16] Two examples of theoretical curves for the upstream

fluid pressure as a function of time as predicted by
equation (17) are depicted in Figure 3a. All parameters
are the same as those for Figure 2a, for reference. Now the
upstream pressure does not stabilize at a constant value. The
upstream pressure increases rapidly initially, then the
growth rate decreases, and the pressure asymptotically
approaches a linear function. Figure 3a shows two different
asymptotic slopes, dpu/dt, for the two different specific
storages Ss. However both show a common intercept, Pu

int,
because the permeability k is the same for both curves. This
indicates that the specific storage and permeability are
independent and relate directly to the slope and the inter-
cept, respectively. From equation (17), the slope and inter-
cept of the steady state pressure curve are

dpu

dt
¼ Q

SsAL
ð19Þ

and

Pint
u ¼ mQL

3kA
; ð20Þ

where Q, A and L are known values. From equation (19),
the specific storage Ss of the rock sample is inversely
proportional to the slope of the linear steady state of a test
record. From equation (20), the permeability k is inversely
proportional to the intercept of the linear steady state
upstream pressure. Another important merit of the present
method with the new boundary condition is its economy of
time. This can be seen from the difference between the
decay times of the transients of the solutions shown in
Figures 2a and 3a. According to the analysis of the transient
parts of solutions (12) and (17) when Su = 0, the decay
duration for the latter boundary condition (Sd ! 0) is four
times shorter than that for the former boundary condition
(Sd ! 1) for a given rock specimen.
[17] The method above is based solely on the measure-

ment of upstream pressure. If we are also able to measure

the downstream pressure, the permeability k can be
simply computed by an independent method from the
differential pressure DP between the upstream and the
downstream after the transient has decayed. This pressure
difference is

DP ¼ pu � pd ¼
mQL
2kA

: ð21Þ

The differential pressure is more reliable than the intercept,
because the former is a direct measure, while the latter is an
extrapolation. Obviously, the measurement of downstream
pressure is very important, but would not be possible when
the downstream reservoir volume is zero without using a
specially designed pressure sensor. With this caveat,
Figure 3b shows theoretical curves for both the upstream
and downstream pressures calculated from equations (17)

Figure 3. (a) Theoretical upstream pressures for two
different specific storages as a function of time showing the
linearly increasing parts after the transient stages. Note that
the two intercepts are the same. (b) Theoretical pressures at
both the upstream and downstream reservoirs as a function
of time showing the relationship between the characteristics
of the curves and hydraulic parameters of specimen. In both
cases, the system compliance is neglected.
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and (18). The difference between the two fluid pressures,
DP, is constant after the transient has decayed. This new
boundary condition provides a simple practical method to
compute the specific storage and the permeability indepen-
dently on a single test, using an analysis only involving a
straight line fit to the asymptote.
[18] In practical situations, however, the compressive

storage of the upstream reservoir cannot be neglected
because the reservoir is deformed and the fluid is com-
pressed under increasing fluid pressure. Next, we consider
the compliance of the upstream reservoir system. The
eigenvalue equation (8) and the upstream and downstream
pressures (9) and (10) now reduce to

tanfL ¼ �aluf; ð22Þ

pu tð Þ ¼ Q

SsALþ Su
t þ mS2s AL

3

3k SsALþ Suð Þ


 �

� 2Q

kA

X1
m¼1

exp �af2
mt

� �
f2
m alu þ Lþ a2l2

uf
2
mL

� � ð23Þ

and

pd tð Þ ¼ Q

SsALþ Su
t � mS2s AL

3 þ 3mSsSuL2

6k SsALþ Suð Þ


 �

� 2Q

kA

X1
m¼1

exp �af2
mt

� �
= cos fmLð Þ

f2
m alu þ Lþ a2l2

uf
2
mL

� � : ð24Þ

Three pairs of theoretical curves for the upstream and
downstream pressures calculated from equations (23) and
(24), obtained by varying k, Ss and Su in turn, keeping
the other variables constant are plotted in Figures 4a, 4b,
and 4c, respectively. The results can be summarized as
follows. Firstly, the permeability k influences only the
upstream pressure intercept or the differential pressure DP
of the steady state, and not its slope (Figure 4a). A lower
permeability causes a higher differential pressure (DP1 is
larger than DP2 when k1 is less than k2 in Figure 4a).
Secondly, the specific storage Ss affects both the slope and
the differential pressure of the steady state (Figure 4b). A
larger Ss leads to a lower slope and larger DP. If Su is
zero, Ss has no effect on DP according to equation (21).
Thirdly, the effect of Su on the fluid pressure behavior is
similar to that of Ss on the slope, but opposite to the
effect of Ss on DP (Figure 4c). A larger Su causes both
the slope and the differential pressure to decrease. Finally,
we note that a much shorter time is taken to reach the
steady state than for the same rock specimen when
the downstream end is open, as seen by comparing
the examples in Figure 4c with those in Figure 2b. For
Su = 6 
 10�8 m3/MPa, it takes less than 12 hours for
Sd = 0, but about 100 hours for Sd = 1. This is a second
practical advantage of this test configuration, i.e., its
relatively short duration makes it particularly useful for
low-porosity rocks.
[19] We now show how to determine the hydraulic

properties of a rock specimen from the time-based record
of the fluid pressures at the upstream and/or downstream
reservoirs in the case Su 6¼ 0. If the time is large enough for

Figure 4. Theoretical pressures as a function of time for
(a) different permeability, (b) different specific storage, and
(c) different the compressive storage of the upstream
reservoir showing the effects of each parameter on the
characteristics of the pressure curves. Details are described
in text.
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the exponential term in the pressures (23) and (24) to be
negligible, only the steady state remains as a linear function.
The constant slope of this steady state is

dpu

dt
¼ dpd

dt
¼ Q

SsALþ Su
: ð25Þ

This slope can be determined from the time-based record of
the fluid pressure at the upstream and/or the downstream
reservoirs, as shown in Figure 4. The differential pressure
DP between the upstream and the downstream is

DP ¼ pu � pd ¼
mQSsL2

2k SsALþ Suð Þ : ð26Þ

In this scenario, DP is no longer independent of Ss.
However, if the compressive storage Su of the upstream
reservoir is known independently, Ss can be obtained
uniquely from the slope of the steady state using
equation (25) when the other parameters (Q, A, L, and Su)
are known. Once Ss is determined, k can be calculated from
the asymptotic differential pressure DP using equation (26)
for a known fluid viscosity m. Again, if it is not possible to
record the downstream pressure, the permeability can be
determined from the intercept of the linear asymptotic
upstream pressure (t = 0) as

Pint
u ¼ mQS2s AL

3

3k SsALþ Suð Þ2
: ð27Þ

This equation for the intercept is a little more complicated
than equation (26) for the differential pressure, so that there
is more chance for inaccuracy in the calculation of k,
particularly from propagation of errors in Su and Ss. The
differential pressure DP is a direct measure, rather than an
estimate based on the extrapolation of the slope as shown in
Figure 3. Thus the measurement of DP is recommended for
obtaining a more accurate value of the permeability if the
measurement of the downstream pressure is possible.
However, this requires a ‘‘zero-volume’’ pressure transducer
endplug [e.g., Green and Wang, 1986; Hart and Wang,
2001] that may introduce its own uncertainties into the
measurement (random and/or systematic), as discussed in
the next section.

3.3. General Boundary Conditions

[20] There is a technical reason to consider that the
downstream reservoir has a finite value of the compressive
storage Sd. It may not be possible to use a completely rigid
pressure transducer to read the fluid pressure at the down-
stream because the deflection of the diaphragm of the
pressure transducer induces a small but finite additional
storage on the downstream side. Such a small Sd may be
negligible for some rock specimens with a large specific
storage. However, if the specific storage of the specimen is
small, neglecting Sd may lead to a serious inaccuracy in the
calculation of the hydraulic properties of specimen if the
equations in the previous section for the downstream
pressure are used. Of course, the upstream pressure record
is enough to determine both the permeability and the
specific storage on its own upon using equations (25) and

(27). For a more accurate calculation of the hydraulic
properties, however, it is advisable to record the down-
stream pressure too.
[21] As shown by equation (7), the analytic solution of

the general diffusion equation consists of two parts, the
asymptotic (steady state) solution and the transient repre-
sented by the series solution. The second part decays
exponentially with time and eventually becomes negligible
as we showed above. For a large t, the asymptotic solution
becomes dominant for the upstream and downstream pres-
sures, so that equations (9) and (10) become in the case of a
finite Sd

pu tð Þ ¼ Qt

SsALþ Su þ Sd
þ mQL

kA

1

3
þ Sd

SsAL
þ S2d
S2s A

2L2

� �

	 1þ Su þ Sd

SsAL

� ��2

ð28Þ

and

pd tð Þ ¼ Qt

SsALþ Su þ Sd
� mQL

kA

1

6
þ Su þ Sd

2SsAL
þ SuSd

S2s A
2L2

� �

	 1þ Su þ Sd

SsAL

� ��2

: ð29Þ

These two pressures are linear functions of time. Again, the
slopes of each pressure give the specific storage and the
differential pressure yields the permeability if Su and Sd are
determined independently. The slope dpu/dt and the
differential pressure DP between pu and pd can be expressed
as

dpu

dt
¼ Q

SsLAþ Su þ Sd
ð30Þ

and

DP ¼ mQL
kA

1

2
þ Sd

SsAL

� �
1þ Su þ Sd

SsAL

� ��1

: ð31Þ

If reading the downstream pressure is not possible, we can
compute the permeability from the intercept Pu

int of the
upstream pressure using

Pint
u ¼ mQL

kA

1

3
þ Sd

SsAL
þ S2d
S2s A

2L2

� �
1þ Su þ Sd

SsAL

� ��2

: ð32Þ

In real tests, both the slope and intercept are determined
based on the asymptotic part of test records. The slope is
stable after the transients decay. Again, the intercept may
possess inaccuracies because it is determined by the
extrapolation of a line that may be established far from
the origin. Thus a small change in the slope can cause a
large difference in the intercept. Instead of using the
intercept, we propose using the differential pressure DP
between the two reservoirs where possible. We then are able
to calculate the specific storage and the permeability using

Ss ¼
Q� Su þ Sdð Þdp=dt

AL 	 dp=dt ð33Þ
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and

k ¼ mL
Q� Su � Sdð Þdp=dt

2ADP

� �
: ð34Þ

These equations are the most general for the case of a closed
system with finite Su, Sd and constant Q.

3.4. Analysis of the Transient

[22] Unlike the pulse transient method, our new method
does not need the transient part of the fluid pressure
variation to compute both the permeability and specific
storage. The asymptotic (steady state) part dominates after
the transient part decays, i.e., the importance of the transient
part of our solution is related to the length of the experi-
mental test. Of the transient terms, the first term (m = 0) is
the most dominant term as time increases. The solution
parameters are a and f, both of which are positive, so that
the exponential term decays to zero as t increases. a is a
material parameter related to the permeability of the rock

specimen and f is a test system parameter determined from
the eigenvalue equation (8).
[23] We plotted the eigenvalue equation (8) for a given

value of lu and 3 different values of ld in Figure 5a, where
the roots fm are the intersection points between the two
functions, on the right hand and left hand sides of
equation (8). These roots could be found by a simple
numerical method such as the bisection algorithm [Burden
and Faires, 1989]. As ld decreases, fm increases for a given
value of m. Now as fL increases, the exponential transient
term decays more rapidly to zero. Two special cases for ld
are shown in Figure 5b, where the lower half is for the case
ld = 0 and the upper half for ld = 1. In both cases, as the
upstream compressibility storage decreases, fmL for fixed m
increases, so that the transient part decays more rapidly.
This analysis demonstrates that we need to minimize the
compressive storages of both the upstream and downstream
reservoirs to minimize the test time. Also a larger stiffness
of the test system yields a more accurate result.

4. Application to Laboratory Measurements

4.1. Test Arrangement

[24] Our proposed method has been applied to the
measurement of the permeability and the specific storage
of cored rock specimens. The major purpose of this
experimental work is limited to illustrating the accuracy
and efficiency of our new laboratory measurement method.
For a laboratory demonstration, we selected Westerly
granite. The basic physical parameters of the rock type
are listed in Table 1. We prepared two core specimens, 38
mm in diameter and 40 mm in length. The end faces of
each specimen were machined to a smooth finish and to be
parallel to each other. Both samples were immersed in
degassed-deionized-distilled water and submitted to a
vacuum for 24 hours at room temperature to let them
saturate. The specimen assembly was inserted into a
pressure vessel for the application of a confining pressure
(Figure 6). Confining pressure was kept constant through-
out each test cycle at 35 MPa. Porous steel spacers were
placed on both sides of the rock specimen to distribute the
fluid flux evenly throughout the cross section of the

Figure 5. Plots of eigenvalue equation (8) showing
periodic tangent functions and hyperbolic functions (a) for
three different cases of the downstream compressive storage
with a given value of the upstream compressive storage, and
(b) for three examples of the upstream storage in two
extreme cases of the downstream compressive storage. In
both plots, fm can be obtained from each intersection point.

Figure 6. Section diagram of the triaxial pressure vessel
with a specimen assembly.

Table 1. Basic Physical Parameters of Westerly Granite

Parameter Value

Wet unit weight, kN/m3 25.76
Dry unit weight, kN/m3 25.71
Porosity, % 0.48
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sample. A pressure transducer endplug was placed at the
downstream end of the sample. Fluid flow was induced
through the sample, as shown schematically in Figure 1,
by connecting the upstream endplug through stainless steel
high pressure tubing to a pump filled with degassed
deionized water. The pump used for these experiments
was a Hydratron piston pump, in which a hardened piston
is forced through a Teflon seal pack into a closed 70 cm3

stainless steel barrel by a stepper-motor-driven actuator
nut. The upstream pressure was monitored using a pressure
transducer attached to the line between the pump and the
rock specimen. With the above experimental arrangement,
the upstream volume is controlled by the initial position
of the piston in the pump barrel, and upstream pressure is
raised by advancing the piston slowly into its barrel at
constant speed after all filling valves have been closed.
The fluid system thus corresponds exactly with the sche-
matic of Figure 1, with the exception that the upstream
volume of the pump barrel is connected to the sample
face through steel tubing. Using a stepper motor driver
has the advantage of accurate piston stroke control, but
the disadvantage of a limited range of available piston
speeds.

4.2. System Compliance

[25] Before rock tests, we calibrated our test system in
terms of the compressive storages of the upstream and
downstream reservoirs as given by equations (1) and (2).
The calibration arrangement was the same as for the rock
tests shown in Figure 6, but an impermeable steel specimen
was used instead of rock samples, as depicted in Figure 7.
The upstream compressive storage Su can be determined

simply by replacing the rock specimen with the imperme-
able substance as shown in Figure 7 (curve a). In this case,
q(t) = 0 in equation (1), leading to

Q ¼ Su
dpu

dt
; ð35Þ

where Q is the flow rate generated by the pump and dpu/dt
the rate of pressure increase due to the piston stroke into an
enclosed space. Thus Su can be simply obtained from
equation (35). In this problem, it was impossible to measure
the compressive storage of the downstream reservoir Sd
because it was not directly connected to the pump system.
However, Sd can be determined by subtracting the upstream
compressive storage Su from the total compressive storage
ST, which in turn can be obtained from the total reservoir
volume VT of the upstream and downstream reservoirs, Vu
and Vd. A schematic diagram of the test setup for measuring
the total compressive storage ST and the resultant pressure
record is depicted in Figure 7 (curve b). ST can be found
from

Q ¼ ST
dpT

dt
; ð36Þ

where dpT/dt is the pressurization rate in the total reservoir
volume.
[26] An example of a record in terms of the fluid

pressure for the total volume and the upstream reservoir
versus the flow generated by the piston movement, re-
spectively, is shown in Figure 7. The compressive storage
of the upstream reservoir can be determined from the
inverse slope of the curve. The compressive storage of
the downstream reservoir can be obtained from the differ-
ence between the total and the upstream compressive
storages. Because we used two porous steel frits on both
sides of the steel specimen, the compressive storage of
the porous disks was incorporated in our calibration. The
recorded curves are clearly linear over 8 MPa. The
nonlinear behavior under 8 MPa results probably from
the deformation of rubber O-ring used for sealing around
the piston. The pore pressure was kept higher than 8 MPa
during our tests in order that the compressive storages of
the test system might be constant in each cycle of tests.
We could not test in the nonlinear zone because the system
compliance changes too rapidly as the fluid pressure
increases.
[27] Even in the relatively linear zones, the curve is not

perfectly linear because the compressive storage is a func-
tion of the fluid pressure [Mok et al., 2002]. Thus we
divided the curve into several segments each with a more
constant value of the compressive storage and then each
cycle of test was completed within each linear segment with
a single value of compressive storage. The compressive
storage is a function of the original volume of reservoir, i.e.,
the bigger the storage, the higher the induced compressive
storage. This means that the compressive storage is depen-
dent upon the position of the piston. We kept the starting
position of piston consistent in the calibration and in every
test to minimize any difference in the system compliance
between the calibration and the test. Also by changing the
starting position of the piston, we were able to test a

Figure 7. Schematic drawing of the test arrangement for
determining the compressive storage of our test system and
examples of calibration records for the upstream compres-
sive storage (curve a) and the total (upstream and down-
stream reservoirs) compressive storage (curve b). The
compressive storage of the downstream reservoir can be
obtained by subtracting the upstream compressive storage
from the total compressive storage. The examples of the
compressive storage are from the linear part of the record
above 10 MPa.
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specimen with different compressive storages in order to
validate the consistency of rock properties under different
system compliances.

4.3. Test Results

[28] An example of the time-based record of fluid pres-
sure variation at the upstream and downstream reservoirs
arising from constant-rate flow injection is given in
Figure 8. Fluid injection with a constant flow rate was
conducted at several different levels of pore pressure at a
constant confining pressure of 35 MPa. At the beginning of
each cycle, the pressures in both reservoirs are in equilib-
rium at a certain level. In agreement with the theoretical
analysis mentioned above, the upstream pressure increases
immediately after generating flow at a decreasing rate
during the initial transient phase, while the downstream
pressure reacts tardily at an increasing rate. Eventually both
rates become identical and keep a constant value, so that
both curves become linear and parallel exactly as predicted
by the theory. The transient for the upstream pressure is not
clearly curved because the rock specimen is very tight. This
was expected by the theoretical analysis (Figure 4).
[29] From each test record, we determined the slope (dp/

dt) using a linear regression method and the average
differential pressure (DP) of the stabilized curves, as
shown in Figure 8. We were able to calculate the specific
storage Ss and the permeability k of each specimen using
equations (33) and (34), respectively. The result is plotted
in the form of the hydraulic properties as a function of
effective stress, which is the differential pressure between

the confining and pore pressures (Figure 9). The specific
storage Ss decreases with increasing effective pressure. On
the basis of our results, we infer that the rock mass
becomes stiffer as the effective pressure increases so that
the pore pressure decreases (Figure 9a). The permeability
decreases with average effective pressure, probably due to
the opening of cracks and pores. As shown in Figure 9b,
our data are consistent with those obtained from the pulse
transient method [Brace et al., 1968; Lin, 1982]. This
result is consistent with previous studies concluding that k
decreases with increasing effective stress [Brace et al.,
1968; Trimmer et al., 1980; Lin, 1982; Kwon et al.,
2001].
[30] We also tested the two rock specimens in different

system conditions. For example, Su can be easily adjusted
by changing the position of the piston. This allows
several tests for one specimen with different system
parameters without changing the test setup. The result
from several tests is much more convincing than that
from a single test, so we conducted the hydraulic tests of
Westerly granite samples under various conditions in
terms of the compressive storage Su and the pumping
rate Q. As listed in Table 2, the consistency of the

Figure 8. An example of test record for Westerly granite.
Fluid injection with a constant flow rate was conducted at
several different levels of pore pressure. Injection was
continued until a linear segment of pressure increase at both
reservoirs was clearly shown after the transient stage. Note
that the differential pressure DP decreases with increasing
pore pressure.

Figure 9. (a) Specific storage and (b) permeability as a
function of effective circumferential stress in Westerly
granite. Also shown is that our result is consistent with
previous reference data obtained from the pulse transient
method by Brace et al. [1968] and Lin [1982].
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calculated hydraulic properties for different test conditions
suggests that our method is reasonably reliable for labo-
ratory measurements.

5. Discussion

[31] The solution of the partial differential equation with
given initial-boundary conditions describes the evolution of
the fluid pressure as a function of time and position. This
evolution also depends on the material and system parame-
ters. The interesting hydraulic parameters, e.g., k and Ss, of
rock specimens can be determined from the measurement of
the variation of the fluid pressure with time at a given
position, on knowing the test system parameters. In order
to solve the differential equation, we need appropriate initial-
boundary conditions which can be controlled in a laboratory
test arrangement. Different initial-boundary conditions cor-
respond to different experimental techniques for measuring
the hydraulic properties [e.g., Brace et al., 1968;Hsieh et al.,
1981;Morin andOlsen, 1987;Kranz et al., 1990;Esaki et al.,
1996]. All techniques are limited in accuracy and utility by
their assumptions and system conditions [Kranz et al., 1990].
[32] Here we first derived an analytic solution of the

general diffusion equation with new initial-boundary
conditions. On the basis of the analytical solution, we
developed a new experimental technique which can simul-
taneously calculate the hydraulic permeability and the
specific storage of a rock sample directly from the record
of the upstream and downstream fluid pressures induced by
constant-rate flow pumping. As we showed in theoretical
and practical examples, the most important finding is the
simplicity of both the inversion for the two hydraulic
properties, k and Ss, and of the test setup and procedure.
The computation process is quite straightforward. Unlike
the pulse transient method [Brace et al., 1968; Lin, 1982;
Zeynaly-Andabily and Rahman, 1995] or the previous flow
pump permeability test [Morin and Olsen, 1987; Esaki et
al., 1996], no tedious history curve-matching algorithm is
required to obtain the hydraulic parameters.
[33] Another merit of our method is that it takes a relatively

short time to conduct a complete test cycle. For example, it
took a cycle of test about an hour for Westerly granite
(Figure 8) in our test system. According to equation (31),
the differential pressure DP can be controlled with the speed
of piston (the pumping rateQ) and the test system compliance
Su and Sd. A good control of DP is important because the

permeability is a function of the pore pressure for a given
confining pressure or effective stress [Wu and Pruess, 2000;
Liang et al., 2001]. With a large DP, it is hard to examine the
variation of the permeability as a function of the effective
stress because the effective stress varies along the specimen.
By decreasing Q and increasing Su and Sd, we could test at
different pore pressure levels for a given confining pressure.

6. Conclusions

[34] We described in this paper the one-dimensional fluid
diffusion along a cored rock sample induced by constant-
rate flow pumping using an analytic solution derived from
the general diffusion equation with appropriate boundary
and initial conditions for a rock specimen placed between
two reservoirs. On the basis of the analysis of the analytic
solution, we developed a new and relatively straightforward
graphical technique for determining the specific storage and
the permeability of a cored rock sample from the record of
the upstream or/and downstream fluid pressures generated
by constant-rate flow pumping. We tested our new method
with two cored samples of Westerly granite. Simply com-
puted values of the specific storage and the permeability of
each specimen were consistent with those from the litera-
ture. In addition to the simplicity, we also found many other
merits of our method to evaluate the hydraulic properties of
rocks, such as reliability, economy of time and flexibility of
system parameters for testing in different conditions.

Appendix A

[35] A brief description of how to solve the general
diffusion equation (3) is given here. Taking Laplace trans-
forms of equation (3) yields

Z1
0

e�st @
2p

@x2
dt � 1

a

Z1
0

e�st @p

@t
dt ¼ 0: ðA1Þ

Equation (A1) with the initial condition, equation (4), can
then be expressed in the form of an ordinary differential
equation

d2p

dx2
� q2p ¼ 0 with q2 ¼ s

a
; ðA2Þ

Table 2. Hydraulic Test Results in Varied Test Conditions in Two Samples of Westerly Granite

Test Su, m
3/Mpa Sd, m

3/MPa Q, m3/sec dp/dt, MPa/s DP, MPa Ss, Pa
�1 k, m2

Sample WG1
WG1F07 1.7 
 10�8 2 
 10�11 6.82 
 10�10 0.0293 10.6 1.5 
 10�10 3.4 
 10�19

WG1R07 4.1 
 10�8 2 
 10�11 6.82 
 10�10 0.0148 4.09 1.3 
 10�10 3.7 
 10�19

WG1F10 1.0 
 10�8 2 
 10�11 9.74 
 10�10 0.0380 13.4 1.6 
 10�10 3.7 
 10�19

WG1R10 3.7 
 10�8 2 
 10�11 9.74 
 10�10 0.0221 9.45 1.8 
 10�10 3.3 
 10�19

Average 1.6 
 10�10 3.5 
 10�19

Standard deviation 2.0 
 10�11 2.1 
 10�20

Sample WG2
WG2R07 4.3 
 10�8 2 
 10�11 6.82 
 10�10 0.0147 3.26 9.5 
 10�11 3.5 
 10�19

WG2R10 4.3 
 10�8 2 
 10�11 9.74 
 10�10 0.0212 3.98 8.4 
 10�11 3.6 
 10�19

WG2F10 1.9 
 10�8 2 
 10�11 9.74 
 10�10 0.0430 8.16 8.9 
 10�11 3.8 
 10�19

Average 8.9 
 10�11 3.6 
 10�19

Standard deviation 5.4 
 10�12 1.7 
 10�20
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where p is the Laplace transform of p. The general solution
of equation (A2) is

p ¼ C1e
qx þ C2e

�qx: ðA3Þ

Taking Laplace transforms of the boundary conditions,
equations (5) and (6), we can determine C1 and C2 in
equation (A3), so that the equation (A3) becomes

p ¼ F

s

q cosh qxþ lds sinh qx

q2 þ lulds2ð Þ sinh qLþ sq lu þ ldð Þ cosh qL ; ðA4Þ

where lu = Su/KA, ld = Sd/KA, F = Q/KA, and K = k/m.
[36] The inversion of the Laplace transform (A4) is

obtained by the usual inverse formula

p ¼ 1

2pi

Z
C

estpds; ðA5Þ

where C is the straight contour from g � i1 to g + i1 and
g lies to the right of all singularities of p. The contour
integral (A5) can then be evaluated by completing the
contour to the left and summing residues. Now estp has a
double pole at s = 0. If we take the first two terms in the
Taylor series for sinh x and cosh x, p becomes

p ¼ 1

s2

F þ F t þ x2

2a
þ ldx

� �
sþ F

x2

2a
t þ ldxt þ

ldx
3

6a

� �
s2 þ ldx

3

6a
ts3

L

a
þ lu þ ld

� �
þ L3

6a2
þ luldLþ lu þ ld

2a
L2

� �
sþ luldL

3

6a

� �
s2

þ 	 	 	 :

ðA6Þ

Now the residue at a pole of order m at z = a of a function
f(z) is

Re s f zð Þ
z¼a

¼ 1

m� 1ð Þ! limz!a

dm�1

dzm�1
z� að Þmf zð Þ½ 

 �
ðA7Þ

Therefore as m = 2, the residue of estp at s = 0 is

Re s
s¼0

estpð Þ ¼ lim
s!0

d

ds
s2 1þ stð Þp sð Þ ¼ F

b
t þ F

2ab
x2 þ 2aldx
� �

� F

6a2b2
L3 þ 3a lu þ ldð ÞL2
�

þ 6a2luldL
�

ðA8Þ

on expanding to the first two terms in a Taylor series, where

b ¼ L

a
þ lu þ ld

� �
:

The p also has simple poles when the denominator in
equation (A4) vanishes, i.e., when

q2 þ lulds
2

� �
sinh qLþ sq lu þ ldð Þ cosh qL ¼ 0: ðA9Þ

This equation has pure imaginary solutions for q, so that

q ¼ if and q2 ¼ �f2; ðA10Þ

where f is a real number. Then from equation (A2)

s ¼ �af2 and q2 ¼ s

a
; ðA11Þ

so that s is always negative.
[37] The transcendental equation (A9) can be rewritten by

substituting equations (A11) and (A12):

tanfL ¼ af lu þ ldð Þ
lulda2f2 � 1

: ðA12Þ

The simple poles are then determined by the roots fm of this
equation. Now estp is of the form N(s)/D(s). For a simple
pole at s = sm, the residue is given by

Re s
s¼sm

estp ¼ N smð Þ
D0 smð Þ

¼
�2F exp �af2

mt
� �

cosfmx� aldfm sinfmxð Þ
fma sinfmLþ f2

mb cosfmL
; ðA13Þ

where a = 3 � 5lulda
2fm

2 � aL(lu + ld)fm
2 and b =

L + 4a(lu + ld) � lulda
2Lfm

2 . The complete analytical
solution of the diffusion equation is then

p ¼ Re s 0ð Þ þ
X1
m¼1

Re s smð Þ;

so that

p x; tð Þ ¼ F

b
t þ F

2ab
x2 þ 2aldx
� �

� F

6a2b2
L3 þ 6a2luldL
�

þ3aL2 lu þ ldð Þ
�

� 2F
X1
m¼1

exp �af2
mt

� �
cosfmx� aldfm sinfmxð Þ

fma sinfmLþ f2
mb cosfmL

:

ðA14Þ
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Mok, U., Y. Bernabé, and B. Evans (2002), Permeability, porosity and pore
geometry of chemically altered porous silica glass, J. Geophys. Res.,
107(B1), 2015, doi:10.1029/2001JB000247.

Morin, R. H., and H. W. Olsen (1987), Theoretical analysis of the transient
pressure response from a constant flow rate hydraulic conductivity test,
Water Resour. Res., 23, 1461–1470.

Mortensen, C. E., R. C. Lee, and R. O. Burford (1977), Observations of
creep-related tilt, strain, and water-level changes on the central San An-
dreas fault, Bull. Seismol. Soc. Am., 67, 641–649.

Neuzil, C. E., C. Cooley, S. E. Silliman, J. D. Bredehoeft, and P. A. Hsieh
(1981), A transient laboratory method for determining the hydraulic
properties of tight rocks-II. Application, Int. J. Rock Mech. Min. Sci.
Geomech. Abstr., 18, 253–258.

Olsen, H. W., R. W. Nichols, and T. L. Rice (1985), Low gradient perme-
ability measurements in a triaxial system, Geotechnique, 35, 145–157.

Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions
for fluid-saturated elastic porous media with compressible constituents,
Rev. Geophys., 14, 227–241.

Roeloffs, E. A., S. S. Burford, F. S. Riley, and A. W. Records (1989),
Hydrologic effects on water level changes associated with episodic fault
creep near Parkfield, California, J. Geophys. Res., 94, 12,387–12,402.

Roxburgh, I. S. (1987), Geology of High-Level Nuclear Waste Disposal,
228 pp., Chapman and Hall, New York.

Savage, D., (Ed.) (1995), The Scientific and Regulatory Basis for
the Geological Disposal of Radioactive Waste, 437 pp., John Wiley,
Hoboken, N. J.

Simpson, G. (2001), Influence of compression-induced fluid pressures on
rock strength in the brittle crust, J. Geophys. Res., 106, 19,465–19,478.
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