12 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication

    No full text
    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (ε). This anti-ε PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates

    Toward the elimination of hepatitis B: networking to promote the prevention of vertical transmission of hepatitis B virus through population-based interventions and multidisciplinary groups in Africa

    No full text
    The WHO African Region had 81 million people with chronic hepatitis B in 2019, which remains a silent killer. Hepatitis B virus (HBV), hepatitis delta virus (HDV), and HIV can be transmitted from the mother to child. If the HBV infection is acquired at infancy, it may lead to chronic hepatitis B in 90% of the cases. WHO reports that 6.4 million children under 5 years live with chronic hepatitis B infection worldwide. The prevention of mother-to-child transmission (PMTCT) of HBV is therefore critical in the global elimination strategy of viral hepatitis as we take lessons from PMTCT of HIV programs in Africa. We sought to create a network of multidisciplinary professional and civil society volunteers with the vision to promote cost-effective, country-driven initiatives to prevent the MTCT of HBV in Africa. In 2018, the Mother–Infant Cohort Hepatitis B Network (MICHep B Network) with members from Cameroon, Zimbabwe, and the United Kingdom and later from Chad, Gabon, and Central African Republic was created. The long-term objectives of the network are to organize capacity-building and networking workshops, create awareness among pregnant women, their partners, and the community, promote the operational research on MTCT of HBV, and extend the network activities to other African countries. The Network organized in Cameroon, two “Knowledge, Attitude and Practice” (KAP) surveys, one in-depth interview of 45 health care workers which revealed a high acceptability of the hepatitis B vaccine by families, two in-person workshops in 2018 and 2019, and one virtual in 2021 with over 190 participants, as well as two workshops on grant writing, bioethics, and biostatistics of 30 postgraduate students. Two HBV seroprevalence studies in pregnant women were conducted in Cameroon and Zimbabwe, in which a prevalence of 5.8% and 2.7%, respectively, was reported. The results and recommendations from the MICHep B Network activities could be implemented in countries of the MICHep B Network and beyond, with the goal of providing free birth dose vaccine against hepatitis B in Africa

    Therapeutic Potential of CPPs

    No full text
    corecore