39,782 research outputs found
Magnetically Regulated Star Formation in Turbulent Clouds
We investigate numerically the combined effects of supersonic turbulence,
strong magnetic fields and ambipolar diffusion on cloud evolution leading to
star formation. We find that, in clouds that are initially magnetically
subcritical, supersonic turbulence can speed up star formation, through
enhanced ambipolar diffusion in shocks. The speedup overcomes a major objection
to the standard scenario of low-mass star formation involving ambipolar
diffusion, since the diffusion time scale at the average density of a molecular
cloud is typically longer than the cloud life time. At the same time, the
strong magnetic field can prevent the large-scale supersonic turbulence from
converting most of the cloud mass into stars in one (short) turbulence crossing
time, and thus alleviate the high efficiency problem associated with the
turbulence-controlled picture for low-mass star formation. We propose that
relatively rapid but inefficient star formation results from supersonic
collisions of somewhat subcritical gas in strongly magnetized, turbulent
clouds. The salient features of this shock-accelerated, ambipolar
diffusion-regulated scenario are demonstrated with numerical experiments.Comment: 10 pages, 3 figures, accepted for publication in ApJ
Accretion flows: the Role of the Outer Boundary Condition
We investigate the influences of the outer boundary conditions(OBCs) on the
structure of an optically thin accretion flow. We find that OBC plays an
important role in determining the topological structure and the profiles of the
surface density and temperature of the solution, therefore it should be
regarded as a new parameter in the accretion disk model.Comment: 9 pages, 2 figures, to appear in ApJ Letters, Vol. 521, L5
Study of acoustic emission during mechanical tests of large flight weight tank structure
A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws
Pyrimido[1,2-a]-purin-10(3H)-one, M(1)G, is less prone to artifact than base oxidation
Pyrimido[1,2-a]-purin-10(3H)-one (M(1)G) is a secondary DNA damage product arising from primary reactive oxygen species (ROS) damage to membrane lipids or deoxyribose. The present study investigated conditions that might lead to artifactual formation or loss of M(1)G during DNA isolation. The addition of antioxidants, DNA isolation at low temperature or non-phenol extraction methods had no statistically significant effect on the number of M(1)G adducts measured in either control or positive control tissue samples. The number of M(1)G adducts in nuclear DNA isolated from brain, liver, kidney, pancreas, lung and heart of control male rats were 0.8, 1.1, 1.1, 1.1, 1.8 and 4.2 M(1)G/10(8) nt, respectively. In rat liver tissue, the mitochondrial DNA contained a 2-fold greater number of M(1)G adducts compared with nuclear DNA. Overall, the results from this study demonstrated that measuring M(1)G is a reliable way to assess oxidative DNA damage because the number of M(1)G adducts is significantly affected by the amount of ROS production, but not by DNA isolation procedures. In addition, this study confirmed that the background number of M(1)G adducts reported in genomic DNA could have been overestimated by one to three orders of magnitude in previous reports
The form factors from analyticity and unitarity
We study the shape parameters of the scalar and vector form factors
using as input dispersion relations and unitarity for the moments of suitable
heavy-light correlators evaluated with Operator Product Expansions, including
terms in perturbative QCD. For the scalar form factor, a low
energy theorem and phase information on the unitarity cut are implemented to
further constrain the shape parameters. We finally determine points on the real
axis and isolate regions in the complex energy plane where zeros of the form
factors are excluded.Comment: 6 pages, 4 figures; Seminar given at DAE-BRNS Workshop on Hadron
Physics Bhabha Atomic Research Centre, Mumbai, India, October 31-November 4,
2011, submitted to Proceeding
Evolution of field spiral galaxies up to redshifts z=1
We have gained VLT/FORS spectra and HST/ACS images of a sample of 220 distant
field spiral galaxies. Spatially resolved rotation curves were extracted and
fitted with synthetic velocity fields that take into account all geometric and
observational effects, like blurring due to the slit width and seeing
influence. The maximum rotation velocity Vmax could be determined for 124
galaxies that cover the redshift range 0.1<z<1.0. The luminosity-rotation
velocity distribution of this sample is offset from the Tully-Fisher relation
(TFR) of local low-mass spirals, whereas the distant high-mass spirals are
compatible with the local TFR. We show that the slope of the local and the
intermediate-z TFR would be in compliance if its scatter decreased by more than
a factor of 3 between z~0.5 and z~0. On the other hand, the distant
low-luminosity disks have much lower stellar M/L ratios than their local
counterparts, while high-luminosity disks barely evolved in M/L over the
covered redshift range. This could be the manifestation of the "downsizing"
effect, i.e. the succesive shift of the peak of star formation from high-mass
to low-mass galaxies towards lower redshifts. This trend might be canceled out
in the TF diagram due to the simultaneous evolution of multiple parameters. We
also estimate the ratios between stellar and total masses, finding that these
remained constant since z=1, as would be expected in the context of
hierarchically growing structure. (Abridged)Comment: 20 pages, 5 figures, ApJ, accepte
Anomalous time correlation in two-dimensional driven diffusive systems
We study the time correlation function of a density field in two-dimensional
driven diffusive systems within the framework of fluctuating hydrodynamics. It
is found that the time correlation exhibits power-law behavior in an
intermediate time regime in the case that the fluctuation-dissipation relation
is violated and that the power-law exponent depends on the extent of this
violation. We obtain this result by employing a renormalization group method to
treat a logarithmic divergence in time.Comment: 6 page
- …
