160 research outputs found

    Nanoscale structuring of tungsten tip yields most coherent electron point-source

    Full text link
    This report demonstrates the most spatially-coherent electron source ever reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5 V. The nanotips under study were crafted using a spatially-confined, field-assisted nitrogen etch which removes material from the periphery of the tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio source. The coherence properties are deduced from holographic measurements in a low-energy electron point source microscope with a carbon nanotube bundle as sample. Using the virtual source size and emission current the brightness normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2

    Fluctuations From Edge Defects in Superconducting Resonators

    Full text link
    Superconducting resonators, used in astronomy and quantum computation, couple strongly to microscopic two-level defects. We monitor the microwave response of superconducting resonators and observe fluctuations in dissipation and resonance frequency. We present a unified model where the observed dissipative and dispersive effects can be explained as originating from a bath of fluctuating two-level systems. From these measurements, we quantify the number and distribution of the defects

    Dangling-bond charge qubit on a silicon surface

    Full text link
    Two closely spaced dangling bonds positioned on a silicon surface and sharing an excess electron are revealed to be a strong candidate for a charge qubit. Based on our study of the coherent dynamics of this qubit, its extremely high tunneling rate ~ 10^14 1/s greatly exceeds the expected decoherence rates for a silicon-based system, thereby overcoming a critical obstacle of charge qubit quantum computing. We investigate possible configurations of dangling bond qubits for quantum computing devices. A first-order analysis of coherent dynamics of dangling bonds shows promise in this respect.Comment: 17 pages, 3 EPS figures, 1 tabl

    Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing

    Get PDF
    A quantum computer can solve hard problems - such as prime factoring, database searching, and quantum simulation - at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection, by distributing a logical state among many physical qubits via quantum entanglement. Superconductivity is an appealing platform, as it allows for constructing large quantum circuits, and is compatible with microfabrication. For superconducting qubits the surface code is a natural choice for error correction, as it uses only nearest-neighbour coupling and rapidly-cycled entangling gates. The gate fidelity requirements are modest: The per-step fidelity threshold is only about 99%. Here, we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92% and a two-qubit gate fidelity up to 99.4%. This places Josephson quantum computing at the fault-tolerant threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger (GHZ) state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.Comment: 15 pages, 13 figures, including supplementary materia

    Simulating weak localization using superconducting quantum circuits

    Full text link
    Understanding complex quantum matter presents a central challenge in condensed matter physics. The difficulty lies in the exponential scaling of the Hilbert space with the system size, making solutions intractable for both analytical and conventional numerical methods. As originally envisioned by Richard Feynman, this class of problems can be tackled using controllable quantum simulators. Despite many efforts, building an quantum emulator capable of solving generic quantum problems remains an outstanding challenge, as this involves controlling a large number of quantum elements. Here, employing a multi-element superconducting quantum circuit and manipulating a single microwave photon, we demonstrate that we can simulate the weak localization phenomenon observed in mesoscopic systems. By engineering the control sequence in our emulator circuit, we are also able to reproduce the well-known temperature dependence of weak localization. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. By demonstrating a high level of control and complexity, our experiment shows the potential for superconducting quantum circuits to realize scalable quantum simulators.Comment: 9 pages, including supplemen
    corecore