285 research outputs found

    Essential Strangeness in Nucleon Magnetic Moments

    Get PDF
    Effective quark magnetic moments are extracted from experimental measurements as a function of the strangeness magnetic moment of the nucleon. Assumptions made in even the most general quark model analyses are ruled out by this investigation. Ab initio QCD calculations demand a non-trivial role for strange quarks in the nucleon. The effective moments from QCD calculations are reproduced for a strangeness magnetic moment contribution to the proton of 0.11 μN\mu_N, which corresponds to F2s(0)=0.33 μNF_2^s(0) = -0.33\ \mu_N.Comment: HYP '94 presentation. File is a uuencoded postscript file of a 2 page manuscript including figures. Also available via anonymous ftp from pacific.mps.ohio-state.edu in pub/NTG/Leinweber as StrQrkNmom.ps(.gz) OSU PP #94-063

    Quasielastic neutrino-nucleus scattering

    Full text link
    We study the sensitivity of neutral-current neutrino-nucleus scattering to the strange-quark content of the axial-vector form factor of the nucleon. A model-independent formalism for this reaction is developed in terms of eight nuclear structure functions. Taking advantage of the insensitivity of the ratio of proton (ν,νp)(\nu,\nu' p) to neutron (ν,νn)(\nu,\nu' n) yields to distortion effects, we compute all structure functions in a relativistic plane wave impulse approximation approach. Further, by employing the notion of a bound-state nucleon propagator, closed-form, analytic expressions for all nuclear-structure functions are developed in terms of an accurately calibrated relativistic mean-field model. Using a strange-quark contribution to the axial-vector form factor of gAs=0.19g_{A}^{s}=-0.19, a significant enhancement in the proton-to-neutron yields is observed relative to one with gAs=0g_{A}^{s}=0.Comment: 23 pages, 12 figures, Revtex, Submitted to Phys. Rev.

    Subleading corrections to parity-violating pion photoproduction

    Get PDF
    We compute the photon asymmetry Bγ for near threshold parity-violating (PV) pion photoproduction through subleading order. We show that subleading contributions involve a new combination of PV couplings not included in previous analyses of hadronic PV. We argue that existing constraints on the leading order contribution to Bγ—obtained from the PV γ-decay of 18F—suggest that the impact of the subleading contributions may be more significant than expected from naturalness arguments

    Chiral Symmetry and the Parity-Violating NNπNN\pi Yukawa Coupling

    Get PDF
    We construct the complete SU(2) parity-violating (PV) π,N,Δ\pi, N, \Delta interaction Lagrangian with one derivative, and calculate the chiral corrections to the PV Yukawa NNπNN\pi coupling constant hπh_\pi through O(1/Λχ3){\cal O}(1/\Lambda_\chi^3) in the leading order of heavy baryon expansion. We discuss the relationship between the renormalized \hpi, the measured value of \hpi, and the corresponding quantity calculated microscopically from the Standard Model four-quark PV interaction.Comment: RevTex, 26 pages + 5 PS figure

    Probing Nucleon Strangeness with Neutrinos: Nuclear Model Dependences

    Get PDF
    The extraction of the nucleon's strangeness axial charge, Delta_s, from inclusive, quasielastic neutral current neutrino cross sections is studied within the framework of the plane-wave impulse approximation. We find that the value of Delta_s can depend significantly on the choice of nuclear model used in analyzing the quasielastic cross section. This model-dependence may be reduced by one order of magnitude when Delta_s is extracted from the ratio of total proton to neutron yields. We apply this analysis to the interpretation of low-energy neutrino cross sections and arrive at a nuclear theory uncertainty of plus/minus 0.03 on the value of Delta_s expected to be determined from the ratio of proton and neutron yields measured by the LSND collaboration. This error compares favorably with estimates of the SU(3)-breaking uncertainty in the value of Delta_s extracted from inclusive, polarized deep-inelastic structure function measurements. We also point out several general features of the quasielastic neutral current neutrino cross section and compare them with the analogous features in inclusive, quasielastic electron scattering.Comment: 40 pages (including 11 postscript figures), uses REVTeX and epsfig.st

    K* nucleon hyperon form factors and nucleon strangeness

    Full text link
    A crucial input for recent meson hyperon cloud model estimates of the nucleon matrix element of the strangeness current are the nucleon-hyperon-K* (NYK*) form factors which regularize some of the arising loops. Prompted by new and forthcoming information on these form factors from hyperon-nucleon potential models, we analyze the dependence of the loop model results for the strange-quark observables on the NYK* form factors and couplings. We find, in particular, that the now generally favored soft N-Lambda-K* form factors can reduce the magnitude of the K* contributions in such models by more than an order of magnitude, compared to previous results with hard form factors. We also discuss some general implications of our results for hadronic loop models.Comment: 9 pages, 8 figures, new co-author, discussion extended to the momentum dependence of the strange vector form factor

    How Magnetic is the Dirac Neutrino?

    Get PDF
    We derive model-independent, "naturalness" upper bounds on the magnetic moments \mu_\nu of Dirac neutrinos generated by physics above the scale of electroweak symmetry breaking. In the absence of fine-tuning of effective operator coefficients, we find that current information on neutrino mass implies that |\mu_\nu | < 10^(-14) Bohr magnetons. This bound is several orders of magnitude stronger than those obtained from analyses of solar and reactor neutrino data and astrophysical observations.Comment: 4 pages, 3 figures, Majorana case discussion corrected. References updated; replaced to match published versio

    Many-Body Currents and the Strange-Quark Content of 4he

    Get PDF
    Meson-exchange current (MEC) contributions to the parity-violating (PV) asymmetry for elastic scattering of polarized electrons from 4^4He are calculated over a range of momentum transfer using Monte Carlo methods and a variational 4^4He ground state wavefunction. The results indicate that MEC's generate a negligible contribution to the asymmetry at low-|\qv|, where a determination of the nucleon's mean square strangeness radius could be carried out at CEBAF. At larger values of momentum transfer -- beyond the first diffraction minimum -- two-body corrections from the ρ\rho-π\pi \lq\lq strangeness charge" operator enter the asymmetry at a potentially observable level, even in the limit of vanishing strange-quark matrix elements of the nucleon. For purposes of constraining the nucleon's strangeness electric form factor, theoretical uncertainties associated with these MEC contributions do not appear to impose serious limitations.Comment: 32 TEX pages and 7 figures (not included, available from authors upon request), CEBAF Preprint #TH-94-1

    Minimal Extension of the Standard Model Scalar Sector

    Get PDF
    The minimal extension of the scalar sector of the standard model contains an additional real scalar field with no gauge quantum numbers. Such a field does not couple to the quarks and leptons directly but rather through its mixing with the standard model Higgs field. We examine the phenomenology of this model focusing on the region of parameter space where the new scalar particle is significantly lighter than the usual Higgs scalar and has small mixing with it. In this region of parameter space most of the properties of the additional scalar particle are independent of the details of the scalar potential. Furthermore the properties of the scalar that is mostly the standard model Higgs can be drastically modified since its dominant branching ratio may be to a pair of the new lighter scalars.Comment: 4 pages, 2 figure
    corecore