2,850 research outputs found
Airframe noise of the DC-9-31
Airframe noise measurements are reported for the DC-9-31 aircraft flown at several speeds and with a number of flap, landing gear, and slat extension configurations. The data are corrected for wind effects, atmospheric attenuation, and spherical divergence, and are normalized to a 1 meter acoustic range. The sound pressure levels are found to vary approximately as the fifth power of flight velocity. Both lift and drag dipoles exist as a significant part of the airframe noise. The sideline data imply that a significant side-force dipole exists only for the flap- and gear-down configurations; for others, the data imply the existence of only the lift and drag dipoles. The data are compared with airframe noise predictions using the drag element and the data analysis methods. Although some of the predictions are good, further work is needed to refine the methods, particularly for the flap- and gear-down configurations
The effect of configuration on strength, durability, and handle of Kevlar fabric-based materials
Five Kevlar based laminates and three Kevlar based coated materials were designed, hand made, and tested against comparative conventional Dacron based materials for strength, peel, tear, puncture, creases, and handle. Emphasis was placed on evaluating geometric orientation of constituents, use of elastomeric film in place of high modulus films, and the use of flying thread loom bias reinforcement of Kevlar yarns. Whereas, the performance of the Kevlar laminates was severely degraded by crease effects, significant gains in overall performance factors were shown for the coated Kevlar materials
Investigation of Kevlar fabric based materials for use with inflatable structures
Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported in detail. The practicality of using Kevlar in aerostat materials is demonstrated and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar based materials are compared with conventional, Dacron reinforced counterparts. A comprehensive test and qualification program is discussed and quantitative biaxial tensile and shear test data are provided. The investigation shows that single ply laminates of Kevlar and plastic films offer significant strength to weight improvements, are less permeable than two ply coated materials, but have a lower flex life
An atlas of 1975 GEOS-3 radar altimeter data for hurricane/tropical disturbance studies, volume 1
Geographic locations of 1975 hurricanes and other tropical disturbances were correlated with the closest approaching orbits of the GEOS-3 satellite and its radar altimeter. The disturbance locations and altimeter data were gathered for a seven-month period beginning with GEOS-3 launch in mid-April 1975. Areas of coverage were the Atlantic Ocean, the Carribean, the Gulf of Mexico, the west coast of the continental United States, and the central and western Pacific Ocean. Volume 1 contains disturbance coverage data for the Atlantic Ocean, Gulf of Mexico, and Eastern Pacific Ocean. Central and Western Pacific coverage is documented in Volume II
Investigation of Kevlar fabric-based materials for use with inflatable structures
Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported. The practicality of using Kevlar in aerostat materials is demonstrated, and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar-based materials are compared with conventional Dacron-reinforced counterparts. A comprehensive test and qualification program is discussed, and considerable quantitative biaxial tensile and shear test data are provided
Powder metallurgy bearings for advanced rocket engines
Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified
PRESISTANT : data pre-processing assistant
A concrete classification algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around. Typically, in order to improve the results, datasets need to be pre-processed. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives and non-experienced users become overwhelmed. Trial and error is not feasible in the presence of big amounts of data. We developed a method and tool—PRESISTANT, with the aim of answering the need for user assistance during data pre-processing. Leveraging ideas from meta-learning, PRESISTANT is capable of assisting the user by recommending pre-processing operators that ultimately improve the classification performance. The user selects a classification algorithm, from the ones considered, and then PRESISTANT proposes candidate transformations to improve the result of the analysis. In the demonstration, participants will experience, at first hand, how PRESISTANT easily and effectively ranks the pre-processing operators.Peer ReviewedPostprint (author's final draft
A New Low Reynolds Number Facility for Active Flow Control Applications
Recent interest in gaining understanding of the dynamics and behavior of the leading-edge vortex structure observed in biological flight systems has prompted the construction of a new low Reynolds number facility. This facility, a recirculating oil tunnel, gives several distinct advantages over similar facilities, utilizing water or air as the working fluid, for this kind of study. Additionally, as understanding is gained, active flow control strategies leading to the stabilization of the leading-edge vortex structure will be investigated, and this facility is specially equipped to enable this study. The tunnel has been designed and installed at the California Institute of Technology Graduate Aeronautical Laboratories. Design features of the facility will be discussed, along with some preliminary measurements conducted on a NACA 0012 wing
Linking working memory and long-term memory: A computational model of the learning of new words
The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity.
Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change
- …
