53 research outputs found

    Book Reviews

    Get PDF

    Biogeographical Survey Identifies Consistent Alternative Physiological Optima and a Minor Role for Environmental Drivers in Maintaining a Polymorphism

    Get PDF
    The contribution of adaptive mechanisms in maintaining genetic polymorphisms is still debated in many systems. To understand the contribution of selective factors in maintaining polymorphism, we investigated large-scale (>1000 km) geographic variation in morph frequencies and fitness-related physiological traits in the damselfly Nehalennia irene. As fitness-related physiological traits, we investigated investment in immune function (phenoloxidase activity), energy storage and fecundity (abdomen protein and lipid content), and flight muscles (thorax protein content). In the first part of the study, our aim was to identify selective agents maintaining the large-scale spatial variation in morph frequencies. Morph frequencies varied considerably among populations, but, in contrast to expectation, in a geographically unstructured way. Furthermore, frequencies co-varied only weakly with the numerous investigated ecological parameters. This suggests that spatial frequency patterns are driven by stochastic processes, or alternatively, are consequence of highly variable and currently unidentified ecological conditions. In line with this, the investigated ecological parameters did not affect the fitness-related physiological traits differently in both morphs. In the second part of the study, we aimed at identifying trade-offs between fitness-related physiological traits that may contribute to the local maintenance of both colour morphs by defining alternative phenotypic optima, and test the spatial consistency of such trade-off patterns. The female morph with higher levels of phenoloxidase activity had a lower thorax protein content, and vice versa, suggesting a trade-off between investments in immune function and in flight muscles. This physiological trade-off was consistent across the geographical scale studied and supports widespread correlational selection, possibly driven by male harassment, favouring alternative trait combinations in both female morphs

    Book Reviews

    Get PDF

    Variation in phenoloxidase activity and its relation to parasite resistance within and between populations of Daphnia magna.

    Get PDF
    Estimates of phenoloxidase (PO) activity have been suggested as a useful indicator of immunocompetence in arthropods, with the idea that high PO activity would indicate high immunocompetence against parasites and pathogens. Here, we test for variation in PO activity among clones of the planktonic crustacean Daphnia magna and its covariation with susceptibility to infections from four different microparasite species (one bacterium and three microsporidia). Strong clonal variation in PO activity was found within and among populations of D. magna, with 45.6% of the total variation being explained by the clone effect. Quantitative measures of parasite success in infection correlated negatively with PO activity when tested across four host populations. However, these correlations disappeared when the data were corrected for population effects. We conclude that PO activity is not a useful measure of resistance to parasites or of immunocompetence within populations of D. magna. We further tested whether D. magna females that are wounded to induce PO activity are more resistant to infections with the bacterium Pasteuria ramosa than non-wounded controls. We found neither a difference in susceptibility nor a difference in disease progression between the induced group and the control group. These results do not question the function of the PO system in arthropod immune response, but rather suggest that immunocompetence cannot be assessed by considering PO activity alone. Immune response is likely to be a multifactorial trait with various host and parasite characteristics playing important roles in its expression
    corecore