74 research outputs found
The scaling behaviour of screened polyelectrolytes
We present a field-theoretic renormalization group (RG) analysis of a single
flexible, screened polyelectrolyte chain (a Debye-H\"uckel chain) in a polar
solvent. We point out that the Debye-H\"uckel chain may be mapped onto a local
field theory which has the same fixed point as a generalised Potts
model. Systematic analysis of the field theory shows that the system is one
with two interplaying length-scales requiring the calculation of scaling
functions as well as exponents to fully describe its physical behaviour. To
illustrate this, we solve the RG equation and explicitly calculate the
exponents and the mean end-to-end length of the chain.Comment: 6 pages, 1 figure; changed title and slight modification to tex
Persistence length of a polyelectrolyte in salty water: a Monte-Carlo study
We address the long standing problem of the dependence of the electrostatic
persistence length of a flexible polyelectrolyte (PE) on the screening
length of the solution within the linear Debye-Huckel theory. The
standard Odijk, Skolnick and Fixman (OSF) theory suggests ,
while some variational theories and computer simulations suggest . In this paper, we use Monte-Carlo simulations to study the conformation
of a simple polyelectrolyte. Using four times longer PEs than in previous
simulations and refined methods for the treatment of the simulation data, we
show that the results are consistent with the OSF dependence . The linear charge density of the PE which enters in the coefficient of
this dependence is properly renormalized to take into account local
fluctuations.Comment: 7 pages, 6 figures. Various corrections in text and reference
Reduced-Order Modeling of Turbulent Reacting Flows with Application to Ramjets and Scramjets
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90621/1/AIAA-50272-117.pd
High temperature piezoelectric properties of flux-grown α-GeO 2 single crystal
International audienceThe temperature-dependence of the piezoelectric properties of trigonal -GeO2 single-crystals obtained by the high-temperature flux method was measured by the resonance technique of the electrical impedance in the 20°C-600°C range. To approach the values of the two independent piezoelectric coefficients d11 and d14, we first measured as a function of temperature the elastic coefficients S11, S14 and S66 and the dielectric permittivity 11 which are involved in the coupling coefficient k of both the thickness shear mode and the transverse mode. A Y-cut plate with a simple +45°-rotation ((YXtwl) +45°/0°/0°) was used to measure the coupling coefficient of the thickness shear mode, and two X-turned plates ((XYtwl) +45°/0°/0° and (XYtwl)-45°/0°/0°) were prepared to characterize the coupling coefficient of two transverse modes. From the whole experimental measurements, the piezoelectric coefficients of -GeO2 were calculated up to 600 °C. They show that this crystal is one of the most efficient in regard of the -quartz-like family at room temperature, and that its thermal comportment retains large piezoelectric properties up to 600°C
Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels
Counterion distributions and effective electrostatic interactions between
spherical macroions in polyelectrolyte solutions are calculated via
second-order perturbation (linear response) theory. By modelling the macroions
as continuous charge distributions that are permeable to counterions,
analytical expressions are obtained for counterion profiles and effective pair
interactions in solutions of star-branched and microgel macroions. The
counterions are found to penetrate stars more easily than microgels, with
important implications for screening of bare macroion interactions. The
effective pair interactions are Yukawa in form for separated macroions, but are
softly repulsive and bounded for overlapping macroions. A one-body volume
energy, which depends on the average macroion concentration, emerges naturally
in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure
The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt
The persistence length of a single, intrinsically rigid polyelectrolyte
chain, above the Manning condensation threshold is investigated theoretically
in presence of added salt. Using a loop expansion method, the partition
function is consistently calculated, taking into account corrections to
mean-field theory. Within a mean-field approximation, the well-known results of
Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that
density correlations between counterions and thermal fluctuations reduce the
stiffness of the chain, indicating an effective attraction between monomers for
highly charged chains and multivalent counterions. This attraction results in a
possible mechanical instability (collapse), alluding to the phenomenon of DNA
condensation. In addition, we find that more counterions condense on slightly
bent conformations of the chain than predicted by the Manning model for the
case of an infinite cylinder. Finally, our results are compared with previous
models and experiments.Comment: 13 pages, 2 ps figure
Dynamics of Collapse of flexible Polyelectrolytes and Polyampholytes
We provide a theory for the dynamics of collapse of strongly charged
polyelectrolytes (PEs) and flexible polyampholytes (PAs) using Langevin
equation. After the initial stage, in which counterions condense onto PE, the
mechanism of approach to the globular state is similar for PE and PA. In both
instances, metastable pearl-necklace structures form in characteristic time
scale that is proportional to N^{4/5} where N is the number of monomers. The
late stage of collapse occurs by merger of clusters with the largest one
growing at the expense of smaller ones (Lifshitz- Slyozov mechanism). The time
scale for this process T_{COLL} N. Simulations are used to support the proposed
collapse mechanism for PA and PE.Comment: 14 pages, 2 figure
The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus subtilis
The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria
Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials
A unified homogenization procedure for split ring metamaterials taking into
account time and spatial dispersion is introduced. The procedure is based on
two coupled systems of equations. The first one comes from an approximation of
the metamaterial as a cubic arrangement of coupled LC circuits, giving the
relation between currents and local magnetic field. The second equation comes
from macroscopic Maxwell equations, and gives the relation between the
macroscopic magnetic field and the average magnetization of the metamaterial.
It is shown that electromagnetic and magnetoinductive waves propagating in the
metamaterial are obtained from this analysis. Therefore, the proposed time and
spatially dispersive permeability accounts for the characterization of the
complete spectrum of waves of the metamaterial. Finally, it is shown that the
proposed theory is in good quantitative and qualitative agreement with full
wave simulations.Comment: 4 pages, 3 figure
DNA Clasping by Mycobacterial HU: The C-Terminal Region of HupB Mediates Increased Specificity of DNA Binding
BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb) bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb)) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupB(MtbN)). Gel retardation assays revealed that HupB(MtbN) is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (K(d)) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region) of HupB(Mtb) imparts greater specificity in DNA binding. HupB(Mtb) protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb) may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role
- …