74 research outputs found

    The scaling behaviour of screened polyelectrolytes

    Full text link
    We present a field-theoretic renormalization group (RG) analysis of a single flexible, screened polyelectrolyte chain (a Debye-H\"uckel chain) in a polar solvent. We point out that the Debye-H\"uckel chain may be mapped onto a local field theory which has the same fixed point as a generalised n1n \to 1 Potts model. Systematic analysis of the field theory shows that the system is one with two interplaying length-scales requiring the calculation of scaling functions as well as exponents to fully describe its physical behaviour. To illustrate this, we solve the RG equation and explicitly calculate the exponents and the mean end-to-end length of the chain.Comment: 6 pages, 1 figure; changed title and slight modification to tex

    Persistence length of a polyelectrolyte in salty water: a Monte-Carlo study

    Full text link
    We address the long standing problem of the dependence of the electrostatic persistence length lel_e of a flexible polyelectrolyte (PE) on the screening length rsr_s of the solution within the linear Debye-Huckel theory. The standard Odijk, Skolnick and Fixman (OSF) theory suggests lers2l_e \propto r_s^2, while some variational theories and computer simulations suggest lersl_e \propto r_s. In this paper, we use Monte-Carlo simulations to study the conformation of a simple polyelectrolyte. Using four times longer PEs than in previous simulations and refined methods for the treatment of the simulation data, we show that the results are consistent with the OSF dependence lers2l_e \propto r_s^2. The linear charge density of the PE which enters in the coefficient of this dependence is properly renormalized to take into account local fluctuations.Comment: 7 pages, 6 figures. Various corrections in text and reference

    High temperature piezoelectric properties of flux-grown α-GeO 2 single crystal

    Get PDF
    International audienceThe temperature-dependence of the piezoelectric properties of trigonal -GeO2 single-crystals obtained by the high-temperature flux method was measured by the resonance technique of the electrical impedance in the 20°C-600°C range. To approach the values of the two independent piezoelectric coefficients d11 and d14, we first measured as a function of temperature the elastic coefficients S11, S14 and S66 and the dielectric permittivity 11 which are involved in the coupling coefficient k of both the thickness shear mode and the transverse mode. A Y-cut plate with a simple +45°-rotation ((YXtwl) +45°/0°/0°) was used to measure the coupling coefficient of the thickness shear mode, and two X-turned plates ((XYtwl) +45°/0°/0° and (XYtwl)-45°/0°/0°) were prepared to characterize the coupling coefficient of two transverse modes. From the whole experimental measurements, the piezoelectric coefficients of -GeO2 were calculated up to 600 °C. They show that this crystal is one of the most efficient in regard of the -quartz-like family at room temperature, and that its thermal comportment retains large piezoelectric properties up to 600°C

    Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels

    Full text link
    Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectrolyte solutions are calculated via second-order perturbation (linear response) theory. By modelling the macroions as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The counterions are found to penetrate stars more easily than microgels, with important implications for screening of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the average macroion concentration, emerges naturally in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure

    Dynamics of Collapse of flexible Polyelectrolytes and Polyampholytes

    Full text link
    We provide a theory for the dynamics of collapse of strongly charged polyelectrolytes (PEs) and flexible polyampholytes (PAs) using Langevin equation. After the initial stage, in which counterions condense onto PE, the mechanism of approach to the globular state is similar for PE and PA. In both instances, metastable pearl-necklace structures form in characteristic time scale that is proportional to N^{4/5} where N is the number of monomers. The late stage of collapse occurs by merger of clusters with the largest one growing at the expense of smaller ones (Lifshitz- Slyozov mechanism). The time scale for this process T_{COLL} N. Simulations are used to support the proposed collapse mechanism for PA and PE.Comment: 14 pages, 2 figure

    The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus subtilis

    Get PDF
    The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure

    DNA Clasping by Mycobacterial HU: The C-Terminal Region of HupB Mediates Increased Specificity of DNA Binding

    Get PDF
    BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb) bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb)) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupB(MtbN)). Gel retardation assays revealed that HupB(MtbN) is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (K(d)) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region) of HupB(Mtb) imparts greater specificity in DNA binding. HupB(Mtb) protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb) may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role
    corecore