26 research outputs found

    Recent advances on information transmission and storage assisted by noise

    Full text link
    The interplay between nonlinear dynamic systems and noise has proved to be of great relevance in several application areas. In this presentation, we focus on the areas of information transmission and storage. We review some recent results on information transmission through nonlinear channels assisted by noise. We also present recent proposals of memory devices in which noise plays an essential role. Finally, we discuss new results on the influence of noise in memristors.Comment: To be published in "Theory and Applications of Nonlinear Dynamics: Model and Design of Complex Systems", Proceedings of ICAND 2012 (Springer, 2014

    Characteristics of a Delayed System with Time-dependent Delay Time

    Full text link
    The characteristics of a time-delayed system with time-dependent delay time is investigated. We demonstrate the nonlinearity characteristics of the time-delayed system are significantly changed depending on the properties of time-dependent delay time and especially that the reconstructed phase trajectory of the system is not collapsed into simple manifold, differently from the delayed system with fixed delay time. We discuss the possibility of a phase space reconstruction and its applications.Comment: 4 pages, 6 figures (to be published in Phys. Rev. E

    Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials

    Get PDF
    Despite extensive research carried out in the last few decades, continuous beer fermentation has not yet managed to outperform the traditional batch technology. An industrial breakthrough in favour of continuous brewing using immobilized yeast could be expected only on achievement of the following process characteristics: simple design, low investment costs, flexible operation, effective process control and good product quality. The application of cheap carrier materials of by-product origin could significantly lower the investment costs of continuous fermentation systems. This work deals with a complete continuous beer fermentation system consisting of a main fermentation reactor (gas-lift) and a maturation reactor (packedbed) containing yeast immobilized on spent grains and corncobs, respectively. The suitability of cheap carrier materials for long-term continuous brewing was proved. It was found that by fine tuning of process parameters (residence time, aeration) it was possible to adjust the flavour profile of the final product. Consumers considered the continuously fermented beer to be of a regular quality. Analytical and sensorial profiles of both continuously and batch fermented beers were compared.(Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil (FAPESPFundação para a Ciência e a Tecnologia (FC

    Effects of Electrical and Structural Remodeling on Atrial Fibrillation Maintenance: A Simulation Study

    Get PDF
    Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength - electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely

    Applications of yeast flocculation in biotechnological processes

    Get PDF
    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer’s yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous β-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.Fundação para a Ciência e a Tecnologia (FCT) – PRAXIS XXI - BD11306/97

    Mapping and Estimation of Monthly Global Solar Irradiation in Different Zones in Souss-Massa Area, Morocco, Using Artificial Neural Networks

    No full text
    Solar radiation data play an important role in solar energy research. However, in regions where the meteorological stations providing these data are unavailable, strong mapping and estimation models are needed. For this reason, we have developed a model based on artificial neural network (ANN) with a multilayer perceptron (MLP) technique to estimate the monthly average global solar irradiation of the Souss-Massa area (located in the southwest of Morocco). In this study, we have used a large database provided by NASA geosatellite database during the period from 1996 to 2005. After testing several models, we concluded that the best model has 25 nodes in the hidden layer and results in a minimum root mean square error (RMSE) equal to 0.234. Furthermore, almost a perfect correlation coefficient R=0.988 was found between measured and estimated values. This developed model was used to map the monthly solar energy potential of the Souss-Massa area during a year as estimated by the ANN and designed with the Kriging interpolation technique. By comparing the annual average solar irradiation between three selected sites in Souss-Massa, as estimated by our model, and six European locations where large solar PV plants are deployed, it is apparent that the Souss-Massa area is blessed with higher solar potential
    corecore