727 research outputs found

    Method of detecting pseudorabies virus specific serum antibody by use of a universal diagnostic antigen

    Get PDF
    A method of testing serum from swine vaccinated against pseudorabies virus with viral envelope-based subunit vaccines to determine the presence of antibodies to infecting pseudorabies virus in wihch an immunoassay is performed on the swine serum using a pseudorabies virus antigen preparation comprising nucleocapsid proteins of the pseudorabies virus. The universal diagnostic antigen is one or more nucleocapsid proteins having relative molecular weights of approximately 23 k, 34 k, 41 k, 63 k and 140 k

    Wall turbulence control

    Get PDF
    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation

    Towards durable multistakeholder-generated solutions: The pilot application of a problem-oriented policy learning protocol to legality verification and community rights in Peru

    Get PDF
    This paper reports and reflects on the pilot application of an 11-step policy learning protocol that was developed by Cashore and Lupberger (2015) based on several years of Cashore’s multi-author collaborations. The protocol was applied for the first time in Peru in 2015 and 2016 by the IUFRO Working Party on Forest Policy Learning Architectures (hereinafter referred to as the project team). The protocol integrates insights from policy learning scholarship (Hall 1993, Sabatier 1999) with Bernstein and Cashore’s (2000, 2012) four pathways of influence framework. The pilot implementation in Peru focused on how global timber legality verification interventions might be harnessed to promote local land rights. Legality verification focuses attention on the checking and auditing of forest management units in order to verify that timber is harvested and traded in compliance with the law. We specifically asked: How can community legal ownership of, and access to, forestland and forest resources be enhanced? The protocol was designed as a dynamic tool, the implementation of which fosters iterative rather than linear processes. It directly integrated two objectives: 1) identifying the causal processes through which global governance initiatives might be harnessed to produce durable results ‘on the ground’; 2) generating insights and strategies in collaboration with relevant stakeholders. This paper reviews and critically evaluates our work in designing and piloting the protocol. We assess what seemed to work well and suggest modifications, including an original diagnostic framework for nurturing durable change. We also assess the implications of the pilot application of the protocol for policy implementation that works to enhance the influence of existing international policy instruments, rather than contributing to fragmentation and incoherence by creating new ones

    Epidemiology and Immune Pathogenesis of Viral Sepsis

    Get PDF
    Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial infections represent the majority of sepsis cases. Up to 42% of sepsis presentations are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g., neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis is not known, nor is there enough information to make an accurate estimate. The initial standard of care for all cases of sepsis, even those that are subsequently proven to be culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this inevitably leads to unnecessary antimicrobial use, with associated consequences for antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It is important to understand non-bacterial causes of sepsis so that inappropriate treatment can be minimised, and appropriate treatments can be developed to improve outcomes. In this review, we summarise what is known about viral sepsis, its most common causes, and how the immune responses to severe viral infections can contribute to sepsis. We also discuss strategies to improve our understanding of viral sepsis, and ways we can integrate this new information into effective treatment

    Blunt body near wake flow field at Mach 6

    Get PDF
    Tests were conducted in a Mach 6 flow to examine the reattachment process of an axisymmetric free shear layer associated with the near wake of a 70 deg. half angle, spherically blunted cone with a cylindrical after body. Model angle of incidence was fixed at 0 deg. and free-stream Reynolds numbers based on body diameter ranged from 0.5 x 10(exp 6) to 4 x 10(exp 6). The sensitivity of wake shear layer transition on reattachment heating was investigated. The present perfect gas study was designed to compliment results obtained previously in facilities capable of producing real gas effects. The instrumented blunted cone model was designed primarily for testing in high enthalpy hypervelocity shock tunnels in both this country and abroad but was amenable for testing in conventional hypersonic blowdown wind tunnels as well. Surface heating rates were inferred from temperature - time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. General flow feature (bow shock, wake shear layer, and recompression shock) locations were visually identified by schlieren photography. Mean shear layer position and growth were determined from intrusive pitot pressure surveys. In addition, wake surveys with a constant temperature hot-wire anemometer were utilized to qualitatively characterize the state of the shear layer prior to reattachment. Experimental results were compared to laminar perfect gas predictions provided by a 3-D Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 21 to 29 percent of the forebody stagnation point heating. Peak heating resulting from the reattaching shear layer was found to be a factor of 2 higher than laminar predictions, which suggested a transitional shear layer. Schlieren flow visualization and fluctuating voltage time histories and spectra from the hot wire surveys across the shear layer substantiate this observation. The sensitivity of surface heating to forebody roughness was characterized for a reattaching shear layer. For example, at R(sub infinity), d = 4 x 10(exp 6), when the shear layer was transitional, the magnitude of peak heating from shear layer impingement was reduced by approximately 24 percent when transition grit was applied to the forebody. The spatial location of the local peak, however, remained unchanged

    3-D High-Lift Flow-Physics Experiment - Transition Measurements

    Get PDF
    An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra

    Micro-sensor thin-film anemometer

    Get PDF
    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique

    Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    Get PDF
    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears
    • …
    corecore