25 research outputs found

    Natural Killer Cell Killing of Acute Myelogenous Leukemia and Acute Lymphoblastic Leukemia Blasts by Killer Cell Immunoglobulin-Like Receptor–Negative Natural Killer Cells after NKG2A and LIR-1 Blockade

    Get PDF
    Although the study of natural killer (NK) cell alloreactivity has been dominated by studies of killer cell immunoglobulin-like receptors (KIRs), we hypothesized that NKG2A and LIR-1, present on 53% ± 13% and 36% ± 18% of normal NK cells, respectively, play roles in the NK cell killing of primary leukemia targets. KIR- cells, which compose nearly half of the circulating NK cell population, exhibit tolerance to primary leukemia targets, suggesting signaling through other inhibitory receptors. Both acute myelogenous leukemia and acute lymphoblastic leukemia targets were rendered susceptible to lysis by fresh resting KIR- NK cells when inhibitory receptor–major histocompatibility class I interactions were blocked by pan-HLA antibodies, demonstrating that these cells are functionally competent. Blockade of a single inhibitory receptor resulted in slightly increased killing, whereas combined LIR-1 and NKG2A blockade consistently resulted in increased NK cell cytotoxicity. Dual blockade of NKG2A and LIR-1 led to significant killing of targets by resting KIR- NK cells, demonstrating that this population is not hyporesponsive. Together these results suggest that alloreactivity of a significant fraction of KIR- NK cells is mediated by NKG2A and LIR-1. Thus strategies to interrupt NKG2A and LIR-1 in combination with anti-KIR blockade hold promise for exploiting NK cell therapy in acute leukemias

    RACK1 Associates with Muscarinic Receptors and Regulates M2 Receptor Trafficking

    Get PDF
    Receptor internalization from the cell surface occurs through several mechanisms. Some of these mechanisms, such as clathrin coated pits, are well understood. The M2 muscarinic acetylcholine receptor undergoes internalization via a poorly-defined clathrin-independent mechanism. We used isotope coded affinity tagging and mass spectrometry to identify the scaffolding protein, receptor for activated C kinase (RACK1) as a protein enriched in M2-immunoprecipitates from M2-expressing cells over those of non-M2 expressing cells. Treatment of cells with the agonist carbachol disrupted the interaction of RACK1 with M2. We further found that RACK1 overexpression inhibits the internalization and subsequent down regulation of the M2 receptor in a receptor subtype-specific manner. Decreased RACK1 expression increases the rate of agonist internalization of the M2 receptor, but decreases the extent of subsequent down-regulation. These results suggest that RACK1 may both interfere with agonist-induced sequestration and be required for subsequent targeting of internalized M2 receptors to the degradative pathway

    Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma

    Get PDF
    BACKGROUND: Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. METHODOLOGY/PRINCIPAL FINDINGS: We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. CONCLUSIONS/SIGNIFICANCE: Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration

    Synthesis and Biological Evaluation of Pyrazolo[1,5‑<i>a</i>]pyrimidine Compounds as Potent and Selective Pim‑1 Inhibitors

    No full text
    Pim-1 has emerged as an attractive target for developing therapeutic agents for treating disorders involving abnormal cell growth, especially cancers. Herein we present lead optimization, chemical synthesis and biological evaluation of pyrazolo­[1,5-<i>a</i>]­pyrimidine compounds as potent and selective inhibitors of Pim-1 starting from a hit from virtual screening. These pyrazolo­[1,5-<i>a</i>]­pyrimidine compounds strongly inhibited Pim-1 and Flt-3 kinases. Selected compounds suppressed both the phosphorylation of BAD protein in a cell-based assay and 2-dimensional colony formation in a clonogenic cell survival assay at submicromolar potency, suggesting that cellular activity was mediated through inhibition of Pim-1. Moreover, these Pim-1 inhibitors did not show significant <i>h</i>ERG inhibition at 30 μM concentration. The lead compound proved to be highly selective against a panel of 119 oncogenic kinases, indicating it had an improved safety profile compared with the first generation Pim-1 inhibitor SGI-1776

    A Small-Molecule Inhibitor of PIM Kinases as a Potential Treatment for Urothelial Carcinomas

    Get PDF
    The proto-oncogene proviral integration site for moloney murine leukemia virus (PIM) kinases (PIM-1, PIM-2, and PIM-3) are serine/threonine kinases that are involved in a number of signaling pathways important to cancer cells. PIM kinases act in downstream effector functions as inhibitors of apoptosis and as positive regulators of G1-S phase progression through the cell cycle. PIM kinases are upregulated in multiple cancer indications, including lymphoma, leukemia, multiple myeloma, and prostate, gastric, and head and neck cancers. Overexpression of one or more PIM family members in patient tumors frequently correlates with poor prognosis. The aim of this investigation was to evaluate PIM expression in low- and high-grade urothelial carcinoma and to assess the role PIM function in disease progression and their potential to serve as molecular targets for therapy. One hundred thirty-seven cases of urothelial carcinoma were included in this study of surgical biopsy and resection specimens. High levels of expression of all three PIM family members were observed in both noninvasive and invasive urothelial carcinomas. The second-generation PIM inhibitor, TP-3654, displays submicromolar activity in pharmacodynamic biomarker modulation, cell proliferation studies, and colony formation assays using the UM-UC-3 bladder cancer cell line. TP-3654 displays favorable human ether-à-go-go-related gene and cytochrome P450 inhibition profiles compared with the first-generation PIM inhibitor, SGI-1776, and exhibits oral bioavailability. In vivo xenograft studies using a bladder cancer cell line show that PIM kinase inhibition can reduce tumor growth, suggesting that PIM kinase inhibitors may be active in human urothelial carcinomas

    Neuroendocrine Neoplasms of the Breast

    No full text
    Neuroendocrine differentiation in breast neoplasms has been a matter of discussion since the first description of a neuroendocrine neoplasm (NEN) in this site. In fact, NENs of the breast (Br-NENs) represent a less well-defined group of neoplasms than analogous entities in other organs, such as the lung and the gastroenteropancreatic tract. Pure neuroendocrine phenotype is extremely rare, both for the well- and for the poorly differentiated morphology. In contrast, the expression of neuroendocrine markers in otherwise typical breast carcinomas, both of special and of non-special type, without morphologically evident neuroendocrine differentiation is more common. Consequently, the diagnostic criteria and the classification scheme for Br-NENs have been continuously changing over time, and real consensus on this topic is still lacking. In this chapter, we recapitulate the evolution of the concept of Br-NEN; review the available knowledge on their morphological, molecular, and clinical features; and critically discuss the current classification scheme
    corecore