361 research outputs found
Coding scheme for 3D vertical flash memory
Recently introduced 3D vertical flash memory is expected to be a disruptive
technology since it overcomes scaling challenges of conventional 2D planar
flash memory by stacking up cells in the vertical direction. However, 3D
vertical flash memory suffers from a new problem known as fast detrapping,
which is a rapid charge loss problem. In this paper, we propose a scheme to
compensate the effect of fast detrapping by intentional inter-cell interference
(ICI). In order to properly control the intentional ICI, our scheme relies on a
coding technique that incorporates the side information of fast detrapping
during the encoding stage. This technique is closely connected to the
well-known problem of coding in a memory with defective cells. Numerical
results show that the proposed scheme can effectively address the problem of
fast detrapping.Comment: 7 pages, 9 figures. accepted to ICC 2015. arXiv admin note: text
overlap with arXiv:1410.177
Black Sea coastal forecasting system
The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system) project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast
A model of inversion of DNA charge by a positive polymer: fractionization of the polymer charge
Charge inversion of a DNA double helix by an oppositely charged flexible
polyelectrolyte (PE) is considered. We assume that, in the neutral state of the
DNA-PE complex, each of the DNA charges is locally compensated by a PE charge.
When an additional PE molecule is adsorbed by DNA, its charge gets fractionized
into monomer charges of defects (tails and arches) on the background of the
perfectly neutralized DNA. These charges spread all over the DNA eliminating
the self-energy of PE. This fractionization mechanism leads to a substantial
inversion of the DNA charge, a phenomenon which is widely used for gene
delivery.Comment: 4 pages, 2 figures. Improved figures and various corrections to tex
Conformation of a Polyelectrolyte Complexed to a Like-Charged Colloid
We report results from a molecular dynamics (MD) simulation on the
conformations of a long flexible polyelectrolyte complexed to a charged sphere,
\textit{both negatively charged}, in the presence of neutralizing counterions
in the strong Coulomb coupling regime. The structure of this complex is very
sensitive to the charge density of the polyelectrolyte. For a fully charged
polyelectrolyte the polymer forms a dense two-dimensional "disk", whereas for a
partially charged polyelectrolyte the monomers are spread over the colloidal
surface. A mechanism involving the \textit{overcharging} of the polyelectrolyte
by counterions is proposed to explain the observed conformations.Comment: 4 pages, 4 figures (6 EPS files
Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools
We provide simple equational principles for deriving rely-guarantee-style
inference rules and refinement laws based on idempotent semirings. We link the
algebraic layer with concrete models of programs based on languages and
execution traces. We have implemented the approach in Isabelle/HOL as a
lightweight concurrency verification tool that supports reasoning about the
control and data flow of concurrent programs with shared variables at different
levels of abstraction. This is illustrated on two simple verification examples
Organised crime and social media; a system for detecting, corroborating and visualising weak signals of organised crime online
This paper describes an approach for detecting the presence or emergence of
Organised Crime (OC) signals on Social Media. It shows how words and phrases,
used by members of the public in Social Media posts, can be treated as weak
signals of OC, enabling information to be classi�ed according to a taxonomy.
Formal Concept Analysis (FCA) is used to group information sources, according
to Crime-type and Location, thus providing a means of corroboration and
creating OC Concepts that can be used to alert police analysts to the possible
presence of OC. The analyst is able to `drill down' into an OC Concept of
interest, discovering additional information that may be pertinent to the crime.
The paper describes the implementation of this approach into a fully-functional
prototype software system, incorporating a Social Media scanning system and a
map-based user interface. The approach and system are illustrated using Human
Tra�cking and Modern Slavery as an example. Real data is used to obtain results
that show that weak signals of OC have been detected and corroborated, thus
alerting to the possible presence of OC
Tau Be or not Tau Be? - A Perspective on Service Compatibility and Substitutability
One of the main open research issues in Service Oriented Computing is to
propose automated techniques to analyse service interfaces. A first problem,
called compatibility, aims at determining whether a set of services (two in
this paper) can be composed together and interact with each other as expected.
Another related problem is to check the substitutability of one service with
another. These problems are especially difficult when behavioural descriptions
(i.e., message calls and their ordering) are taken into account in service
interfaces. Interfaces should capture as faithfully as possible the service
behaviour to make their automated analysis possible while not exhibiting
implementation details. In this position paper, we choose Labelled Transition
Systems to specify the behavioural part of service interfaces. In particular,
we show that internal behaviours (tau transitions) are necessary in these
transition systems in order to detect subtle errors that may occur when
composing a set of services together. We also show that tau transitions should
be handled differently in the compatibility and substitutability problem: the
former problem requires to check if the compatibility is preserved every time a
tau transition is traversed in one interface, whereas the latter requires a
precise analysis of tau branchings in order to make the substitution preserve
the properties (e.g., a compatibility notion) which were ensured before
replacement.Comment: In Proceedings WCSI 2010, arXiv:1010.233
Microscopic dynamics in liquid metals: the experimental point of view
The experimental results relevant for the understanding of the microscopic
dynamics in liquid metals are reviewed, with special regards to the ones
achieved in the last two decades. Inelastic Neutron Scattering played a major
role since the development of neutron facilities in the sixties. The last ten
years, however, saw the development of third generation radiation sources,
which opened the possibility of performing Inelastic Scattering with X rays,
thus disclosing previously unaccessible energy-momentum regions. The purely
coherent response of X rays, moreover, combined with the mixed
coherent/incoherent response typical of neutron scattering, provides enormous
potentialities to disentangle aspects related to the collectivity of motion
from the single particle dynamics.
If the last twenty years saw major experimental developments, on the
theoretical side fresh ideas came up to the side of the most traditional and
established theories. Beside the raw experimental results, therefore, we review
models and theoretical approaches for the description of microscopic dynamics
over different length-scales, from the hydrodynamic region down to the single
particle regime, walking the perilous and sometimes uncharted path of the
generalized hydrodynamics extension. Approaches peculiar of conductive systems,
based on the ionic plasma theory, are also considered, as well as kinetic and
mode coupling theory applied to hard sphere systems, which turn out to mimic
with remarkable detail the atomic dynamics of liquid metals. Finally, cutting
edges issues and open problems, such as the ultimate origin of the anomalous
acoustic dispersion or the relevance of transport properties of a conductive
systems in ruling the ionic dynamic structure factor are discussed.Comment: 53 pages, 41 figures, to appear in "The Review of Modern Physics".
Tentatively scheduled for July issu
Symmetry in temporal logic model checking
Temporal logic model checking involves checking the state-space of a model of a system to determine whether errors can occur in the system. Often this involves checking symmetrically equivalent areas of the state-space. The use of symmetry reduction to increase the efficiency of model checking has inspired a wealth of activity in the area of model checking research. We provide a survey of the associated literature
- …
