2,834 research outputs found

    Prompt emission polarimetry of Gamma Ray Bursts with ASTROSAT CZT-Imager

    Full text link
    X-ray and Gamma-ray polarization measurements of the prompt emission of Gamma-ray bursts (GRBs) are believed to be extremely important for testing various models of GRBs. So far, the available measurements of hard X-ray polarization of GRB prompt emission have not significantly constrained the GRB models, particularly because of the difficulty of measuring polarization in these bands. The CZT Imager (CZTI) onboard {\em AstroSat} is primarily an X-ray spectroscopic instrument that also works as a wide angle GRB monitor due to the transparency of its support structure above 100 keV. It also has experimentally verified polarization measurement capability in the 100 - 300 keV energy range and thus provides a unique opportunity to attempt spectro-polarimetric studies of GRBs. Here we present the polarization data for the brightest 11 GRBs detected by CZTI during its first year of operation. Among these, 5 GRBs show polarization signatures with \gtrapprox3σ\sigma, and 1 GRB shows \>2σ\sigma detection significance. We place upper limits for the remaining 5 GRBs. We provide details of the various tests performed to validate our polarization measurements. While it is difficult yet to discriminate between various emission models with the current sample alone, the large number of polarization measurements CZTI expects to gather in its minimum lifetime of five years should help to significantly improve our understanding of the prompt emission.Comment: Accepted for Publication in ApJ ; a figure has been update

    Atomic Scale Sliding and Rolling of Carbon Nanotubes

    Get PDF
    A carbon nanotube is an ideal object for understanding the atomic scale aspects of interface interaction and friction. Using molecular statics and dynamics methods different types of motion of nanotubes on a graphite surface are investigated. We found that each nanotube has unique equilibrium orientations with sharp potential energy minima. This leads to atomic scale locking of the nanotube. The effective contact area and the total interaction energy scale with the square root of the radius. Sliding and rolling of nanotubes have different characters. The potential energy barriers for sliding nanotubes are higher than that for perfect rolling. When the nanotube is pushed, we observe a combination of atomic scale spinning and sliding motion. The result is rolling with the friction force comparable to sliding.Comment: 4 pages (two column) 6 figures - one ep

    Anomalous pinning behavior in an incommensurate two-chain model of friction

    Full text link
    Pinning phenomena in an incommensurate two-chain model of friction are studied numerically. The pinning effect due to the breaking of analyticity exists in the present model. The pinning behavior is, however, quite different from that for the breaking of analyticity state of the Frenkel-Kontorova model. When the elasticity of chains or the strength of interchain interaction is changed, pinning force and maximum static frictional force show anomalously complicated behavior accompanied by a successive phase transition and they vanish completely under certain conditions.Comment: RevTex, 9 pages, 19 figures, to appear in Phys. Rev. B58 No.23(1998

    Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor

    Full text link
    Miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scale. Meanwhile it also unravels the force field vectorial character and how its topology impacts the measurement. Here we expose an ultrasensitive method to image 2D vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire. This novel approach relies on angular and spectral tomography of its quasi frequency-degenerated transverse mechanical polarizations: immersing the nanoresonator in a vectorial force field does not only shift its eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This universal method is employed to map a tunable electrostatic force field whose spatial gradients can even take precedence over the intrinsic nanowire properties. Enabling vectorial force fields imaging with demonstrated sensitivities of attonewton variations over the nanoprobe Brownian trajectory will have strong impact on scientific exploration at the nanoscale

    Theoretical Study of Friction: A Case of One-Dimensional Clean Surfaces

    Full text link
    A new method has been proposed to evaluate the frictional force in the stationary state. This method is applied to the 1-dimensional model of clean surfaces. The kinetic frictional force is seen to depend on velocity in general, but the dependence becomes weaker as the maximum static frictional force increases and in the limiting case the kinetic friction gets only weakly dependent on velocity as described by one of the laws of friction. It is also shown that there is a phase transition between state with vanishing maximum static frictional force and that with finite one. The role of randomness at the interface and the relation to the impurity pinning of the sliding Charge-Density-Wave are discussed. to appear in Phys.Rev.B. abstract only. Full text is available upon request. E-mail: [email protected]: 2 pages, Plain TEX, OUCMT-94-

    The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations

    Full text link
    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.Comment: 15 pages, 7 figures, SPIE (2016) 9909-0

    Thermal effects on atomic friction

    Full text link
    We model friction acting on the tip of an atomic force microscope as it is dragged across a surface at non-zero temperatures. We find that stick-slip motion occurs and that the average frictional force follows lnv2/3|\ln v|^{2/3}, where vv is the tip velocity. This compares well to recent experimental work (Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all microscopic parameters. We calculate the scaled form of the average frictional force's dependence on both temperature and tip speed as well as the form of the friction-force distribution function.Comment: Accepted for publication, Physical Review Letter

    The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)

    Full text link
    Static and dynamic changes induced by adsorption of atomic hydrogen on the NiAl(110) lattice at 130 K have been examined as a function of adsorbate coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages the hydrogen is itinerant because of quantum tunneling between sites and exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate mediated interactions produce an ordered superstructure with c(2x2) symmetry, and at higher coverages, hydrogen exists as a disordered lattice gas. This picture of how hydrogen interacts with NiAl(110) is developed from our data and compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
    corecore