2,834 research outputs found
Prompt emission polarimetry of Gamma Ray Bursts with ASTROSAT CZT-Imager
X-ray and Gamma-ray polarization measurements of the prompt emission of
Gamma-ray bursts (GRBs) are believed to be extremely important for testing
various models of GRBs. So far, the available measurements of hard X-ray
polarization of GRB prompt emission have not significantly constrained the GRB
models, particularly because of the difficulty of measuring polarization in
these bands. The CZT Imager (CZTI) onboard {\em AstroSat} is primarily an X-ray
spectroscopic instrument that also works as a wide angle GRB monitor due to the
transparency of its support structure above 100 keV. It also has experimentally
verified polarization measurement capability in the 100 300 keV energy
range and thus provides a unique opportunity to attempt spectro-polarimetric
studies of GRBs. Here we present the polarization data for the brightest 11
GRBs detected by CZTI during its first year of operation. Among these, 5 GRBs
show polarization signatures with 3, and 1 GRB shows
2 detection significance. We place upper limits for the remaining 5
GRBs. We provide details of the various tests performed to validate our
polarization measurements. While it is difficult yet to discriminate between
various emission models with the current sample alone, the large number of
polarization measurements CZTI expects to gather in its minimum lifetime of
five years should help to significantly improve our understanding of the prompt
emission.Comment: Accepted for Publication in ApJ ; a figure has been update
Atomic Scale Sliding and Rolling of Carbon Nanotubes
A carbon nanotube is an ideal object for understanding the atomic scale
aspects of interface interaction and friction. Using molecular statics and
dynamics methods different types of motion of nanotubes on a graphite surface
are investigated. We found that each nanotube has unique equilibrium
orientations with sharp potential energy minima. This leads to atomic scale
locking of the nanotube.
The effective contact area and the total interaction energy scale with the
square root of the radius. Sliding and rolling of nanotubes have different
characters. The potential energy barriers for sliding nanotubes are higher than
that for perfect rolling. When the nanotube is pushed, we observe a combination
of atomic scale spinning and sliding motion. The result is rolling with the
friction force comparable to sliding.Comment: 4 pages (two column) 6 figures - one ep
Anomalous pinning behavior in an incommensurate two-chain model of friction
Pinning phenomena in an incommensurate two-chain model of friction are
studied numerically. The pinning effect due to the breaking of analyticity
exists in the present model. The pinning behavior is, however, quite different
from that for the breaking of analyticity state of the Frenkel-Kontorova model.
When the elasticity of chains or the strength of interchain interaction is
changed, pinning force and maximum static frictional force show anomalously
complicated behavior accompanied by a successive phase transition and they
vanish completely under certain conditions.Comment: RevTex, 9 pages, 19 figures, to appear in Phys. Rev. B58 No.23(1998
Composição da produção de grãos na haste principal da canola.
Orientador: Genei Antonio Dalmago
Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor
Miniaturization of force probes into nanomechanical oscillators enables
ultrasensitive investigations of forces on dimensions smaller than their
characteristic length scale. Meanwhile it also unravels the force field
vectorial character and how its topology impacts the measurement. Here we
expose an ultrasensitive method to image 2D vectorial force fields by
optomechanically following the bidimensional Brownian motion of a singly
clamped nanowire. This novel approach relies on angular and spectral tomography
of its quasi frequency-degenerated transverse mechanical polarizations:
immersing the nanoresonator in a vectorial force field does not only shift its
eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This
universal method is employed to map a tunable electrostatic force field whose
spatial gradients can even take precedence over the intrinsic nanowire
properties. Enabling vectorial force fields imaging with demonstrated
sensitivities of attonewton variations over the nanoprobe Brownian trajectory
will have strong impact on scientific exploration at the nanoscale
Theoretical Study of Friction: A Case of One-Dimensional Clean Surfaces
A new method has been proposed to evaluate the frictional force in the
stationary state. This method is applied to the 1-dimensional model of clean
surfaces. The kinetic frictional force is seen to depend on velocity in
general, but the dependence becomes weaker as the maximum static frictional
force increases and in the limiting case the kinetic friction gets only weakly
dependent on velocity as described by one of the laws of friction. It is also
shown that there is a phase transition between state with vanishing maximum
static frictional force and that with finite one. The role of randomness at the
interface and the relation to the impurity pinning of the sliding
Charge-Density-Wave are discussed. to appear in Phys.Rev.B. abstract only. Full
text is available upon request. E-mail: [email protected]: 2 pages, Plain TEX, OUCMT-94-
The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations
The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared
Imaging Spectrograph) will complete its preliminary design phase in 2016. The
IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral
field spectrograph (IFS) and imager that are able to conduct simultaneous
diffraction-limited observations behind the advanced adaptive optics system
NFIRAOS. The IRIS science cases have continued to be developed and new science
studies have been investigated to aid in technical performance and design
requirements. In this development phase, the IRIS science team has paid
particular attention to the selection of filters, gratings, sensitivities of
the entire system, and science cases that will benefit from the parallel mode
of the IFS and imaging camera. We present new science cases for IRIS using the
latest end-to-end data simulator on the following topics: Solar System bodies,
the Galactic center, active galactic nuclei (AGN), and distant
gravitationally-lensed galaxies. We then briefly discuss the necessity of an
advanced data management system and data reduction pipeline.Comment: 15 pages, 7 figures, SPIE (2016) 9909-0
Thermal effects on atomic friction
We model friction acting on the tip of an atomic force microscope as it is
dragged across a surface at non-zero temperatures. We find that stick-slip
motion occurs and that the average frictional force follows ,
where is the tip velocity. This compares well to recent experimental work
(Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all
microscopic parameters. We calculate the scaled form of the average frictional
force's dependence on both temperature and tip speed as well as the form of the
friction-force distribution function.Comment: Accepted for publication, Physical Review Letter
The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)
Static and dynamic changes induced by adsorption of atomic hydrogen on the
NiAl(110) lattice at 130 K have been examined as a function of adsorbate
coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages
the hydrogen is itinerant because of quantum tunneling between sites and
exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate
mediated interactions produce an ordered superstructure with c(2x2) symmetry,
and at higher coverages, hydrogen exists as a disordered lattice gas. This
picture of how hydrogen interacts with NiAl(110) is developed from our data and
compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
- …
