701 research outputs found

    Phase correction at millimeter wavelengths using observations of water vapor at 22 GHz

    Get PDF
    We present results from phase correction efforts at the Owens Valley Radio Observatory millimeter array (OVRO). A brief description of the theory of phase correction is followed by a description of the water line monitors (WLMs) constructed and placed on each of the six antennas of the array. A summary of the current software in place is also included. We present examples of data corrected using this technique and the first image created using radiometric phase correction at OVRO. The phase correction system is undergoing further development and will soon be made available for general observing at the array. A brief discussion of application of the technique for future arrays (e.g. MMA, LSA, etc.) is included as a conclusion to this contribution

    Phase correction at millimeter wavelengths using observations of water vapor at 22 GHz

    Get PDF
    We present results from phase correction efforts at the Owens Valley Radio Observatory millimeter array (OVRO). A brief description of the theory of phase correction is followed by a description of the water line monitors (WLMs) constructed and placed on each of the six antennas of the array. A summary of the current software in place is also included. We present examples of data corrected using this technique and the first image created using radiometric phase correction at OVRO. The phase correction system is undergoing further development and will soon be made available for general observing at the array. A brief discussion of application of the technique for future arrays (e.g. MMA, LSA, etc.) is included as a conclusion to this contribution

    The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types

    Full text link
    A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of AGB stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. In order to constrain the circumstellar HCN abundance distribution a detailed non-LTE excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. The median values for the derived abundances of HCN (with respect to H2) are 3x10-5, 7x10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars.Comment: Accepted for publication in A&

    OH 12.8-0.9: A New Water-Fountain Source

    Full text link
    We present observational evidence that the OH/IR star OH 12.8-0.9 is the fourth in a class of objects previously dubbed "water-fountain" sources. Using the Very Long Baseline Array, we produced the first images of the water maser emission associated with OH 12.8-0.9. We find that the masers are located in two compact regions with an angular separation of ~109 mas on the sky. The axis of separation between the two maser regions is at a position angle of 1.5 deg. East of North with the blue-shifted (-80.5 to -85.5 km/s) masers located to the North and the red-shifted (-32.0 to -35.5 km/s) masers to the South. In addition, we find that the blue- and red-shifted masers are distributed along arc-like structures ~10-12 mas across oriented roughly perpendicular to the separation axis. The morphology exhibited by the water masers is suggestive of an axisymmetric wind with the masers tracing bow shocks formed as the wind impacts the ambient medium. This bipolar jet-like structure is typical of the three other confirmed water-fountain sources. When combined with the previously observed spectral characteristics of OH 12.8-0.9, the observed spatio-kinematic structure of the water masers provides strong evidence that OH 12.8-0.9 is indeed a member of the water-fountain class.Comment: 12 pages, 2 figures (1 color), accepted for publication in the Ap J Letter

    A Proper Motion Study of the Haro 6-10 Outflow: Evidence for a Subarcsecond Binary

    Full text link
    We present single-dish and VLBI observations of an outburst of water maser emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus molecular cloud and contains a visible T Tauri star with an infrared companion 1.3" north. Using the Very Long Baseline Array, we obtained five observations spanning 3 months and derived absolute positions for 20 distinct maser spots. Three of the masers can be traced over 3 or more epochs, enabling us to extract absolute proper motions and tangential velocities. We deduce that the masers represent one side of a bipolar outflow that lies nearly in the plane of the sky with an opening angle of ~45\deg. They are located within 50 mas of the southern component of the binary, the visible T Tauri star Haro 6-10S. The mean position angle on the sky of the maser proper motions (~220\deg) suggests they are related to the previously observed giant Herbig-Haro (HH) flow which includes HH410, HH411, HH412, and HH184A-E. A previously observed HH jet and extended radio continuum emission (mean position angle of ~190\deg) must also originate in the vicinity of Haro6-10S and represent a second, distinct outflow in this region. We propose that a yet unobserved companion within 150 mas of Haro6-10S is responsible for the giant HH/maser outflow while the visible star is associated with the HH jet. Despite the presence of H_2 emission in the spectrum of the northern component of the binary, Haro6-10N, none of outflows/jets can be tied directly to this young stellar object
    • …
    corecore