22 research outputs found

    Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas

    No full text
    Several ethylene-response factor (ERF) transcription factors are believed to play a crucial role in the activation of plant defence responses, but little is known about the relationships between the diversity of this family and the functions of groups or individual ERFs in this process. In this study, 200 ERF genes from the unigene cotton database were identified. Conserved amino acid residues and phylogeny reconstruction using the AP2 conserved domain suggest that the classification into 10 major groups used for Arabidopsis and rice is applicable to the cotton ERF family. Based on in silico studies, we predict that group IX ERF genes in cotton are involved in jasmonate (JA), ethylene (ET) and pathogen responses. To test this hypothesis, we analysed the transcript profiles of the group IXa subfamily in the regulation of specific resistance to Xanthomonas campestris pathovar malvacearum. The expression of four members of group IXa was induced on challenge with X. campestris pv. malvacearum. Furthermore, the expression of several ERF genes of group IXa was induced synergistically by JA in combination with ET, suggesting that the encoded ERF proteins may play key roles in the integration of both signals to activate JA- and ET-dependent responses

    Immunosuppressive CD14+HLA-DRlow/− monocytes in B-cell non-Hodgkin lymphoma

    No full text
    Immunosuppression is a known risk factor for B-cell non-Hodgkin lymphoma (NHL), yet mechanisms of tumor-associated immunosuppression remain to be fully characterized. We examined the immunophenotype of 40 NHL patients and 27 age-matched healthy volunteers to better understand systemic immune suppression. NHL peripheral blood mononuclear cells had significantly decreased interferon-γ production and proliferation. This suppression was not the result of regulatory T cells, interleukin-6 or interleukin-10, as these factors were not different between NHL and healthy volunteers (controls). We were able to restore T-cell proliferation by removing NHL monocytes, suggesting that these monocytes are suppressive. This suppression was mediated in part through arginine metabolism as exogenous arginine supplementation partially overcame monocytes' suppression of T-cell proliferation in vitro and NHL patients had elevated arginase I in their plasma. NHL monocytes had impaired STAT1 phosphorylation and interferon-α production to CpG stimulation and a dendritic cell differentiation deficiency. Further studies demonstrated that monocytes from NHL patients had decreased HLA-DR and Tumor necrosis factor-α receptor II (CD120b) expression compared with controls (CD14+HLA-DRlow/−CD120blow). Patients with increased ratios of CD14+HLA-DRlow/− monocytes had more aggressive disease and suppressed immune functions. In summary, we report that CD14+HLA-DRlow/− monocytes are a major and multifactorial contributor to systemic immunosuppression in NHL
    corecore